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ABSTRACT

The equilibrium conditions for two-phase and three-phase equilibria
in ternary systems are derived from the minimum conditions for the free
energy, and special solutions are discussed on model examples. The pre-
dictive capabilities of the thermodynamic approach are demonstrated on a
number of refractory carbide systems, and methods for the determination of
phase stabilities from experimental phase equilibrium data are outlined. The
thermodynamic discussions are supplemented by a general review of recent
phase diagram work on refractory transition metal-B-element systems.
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I. INTRODUCTION

At the present time, strong efforts are being made to utilize the

refractory properties of the sernimetal compounds of the high melting transi-

tion metals in parts for service at extremely high temperatures; similarly,

special techniques, such as dispersion and precipitation strengthening, are

being extensively used to improve the high temperature mechanical properties

of refractory alloys, and a considerable amount of research work is beingV
devoted to the development of oxidation resistant coatings for refractory

metal alloys. !I
- Knowledge of the phase-equilibria existing in the corresponding alloy

systems is, therefore, of utmost importance for advanced alloy development

work. This is especially true in those instances where the intended opera-

tion temperatures are so high that non-equilibrium states cannot be main-

tained over significant lengths of time; consequently, the intrinsic stability

of the system itself becomes one' of the controlling factors.

A simple, and most direct route, to solve a specific problem would

be the consultation of the equilibrium diagram for the particular alloy system;

this way, however, can be followed only in exceptional cases, for extensive

phase diagram data are available for only binary systems, whereas data on

higher-order alloys are scarce and usually incomplete.

In view of the large number of possible combinations, which makes

a timely experimental solution of the problem nearly illusoric, the question

arises of how thermodynamic principles may be applied to relate the thermo-

chemical properties of binary alloys to their phase behavior in higher order

systems.

(1
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If we consider, for example, a simple ternary system of the type

shown in Figure I where the solubilities in the boundary phases are quite

restricted, a simple consideration tells us, that in order to make the com-

bination A + BC stable with regard to AC-B, the free energy change of the

reaction

A + BG-- AC + B,

AF F +FA - F - F
FR=FB+AC A BC

must be greater than zero. Knowing, therefore, the free energies of the

individual compounds, one could write down the free energy changes of all

C

4\

AC

Ni

Figure 1. Possible Phase Relationships in a Simplified
Ternary System -l

N NL
4 N



po3sible combinations, and select as the stable equilibria those, for which

the above condition holds. Of course, this would only hold true if no ternary

compounds occur in the system, and if the range of homogeneity of the phases

is so small that the corresponding free energy variations within the homo-

geneity fields can be neglected. Most probably,the temperature section of the sys-

tern when correctly drawn, would appear as shown in Figure Z. The dark

areas represent the homogeneous (single-phase) ranges of the phases, and

the ternary phase field is subdivided into a number of areas where either two-

or three-phases are in equilibrium.

C

A

a \

/ 8C-C

AC- BC

AC - C

A ACC SC

7' / A.ABAEC-

A- B r,

-A

Figure 2. F.ealistic Appearance of the Diagram Type
Presented in Figure i.

Although this approach looks - at least on the surface - qaite tempting,

its predictive value is nil. First of all, we have to assume,a priori,that the

homogeneity ranges of the phases will be small, and consequently accept the

3

V

%I



risk that we might be wrong; the other possibility, of course, to establish

the basic assumptions by experiment, would defeat the original purpose of the

calculations. Furthermore, and this is especially true for those cases, where

those ternary systems are being considered, wherein the compounds of the

binary systems A-C and B-C have similar structural properties, we will

have to expect extended solid solution formation between the alloy phases, which

ultimately yield the conditions shown In Figure 3. Here, the elements A

and B, as well as the intermediate phases AC and BC, form a complete series

of solid solutions. An infinite number of composition pairs (A, B)-(A, B)C exist,

which are in equilibrium with each other, and the tie lines, which connect co-

existing compositions, give us tie relative amount as well as the compositions

of the equilibrium phases for any alloy in the two-phase field. Considering

/ /

'

AC BC

4,
/ / / \7

/ // /•\

/'

A / / // \e.,

Figure 3. Principal Appearance of the Equilibria Upon Solid
Solution Formation Between Two Components and
the Intermediate Compounds.



this type of equilibrium from a more practical point of view, we see that the tie

lines would,for example, give us the compositions of the reaction products, if

alloys, from the edge system A-B, would be allowed to react with the com-

ponent C.

From these considerations it becomes quite obvious, that in order to

reach more definitive conclusions regarding the possible phase distribution

in a given system, any reasonable thermodynamic approach would have to

include the capability of quantitatively taking into account the changes intro-

duced by extended solid solution formation, and also would have to provide us

with relationships, which would principally enable us to determine the ternary

homogeneity range of binary phases.

In the following sections, we shall stress briefly the basic thermo-

dynamic approaches. After demonstrating the applicability of the equations

on a few model examples, we will concentrate on the thermodynamic evalua-

_. tion and interpretation of a number of recently investigated refractory alloy

systems and finally discuss the capabilities and limitations of thermodynamic

approaches in solving practical application problems.

II. THERMOCHEMISTRY OF PHASE REACTIONS IN TERNARY

SYSTEMS

According to the phase rule, the maximum number of phases which

can coexist in a three component system is five, or, with temperature and

pressure fixed, three. Therefore, a temperature section of a ternary system

will ordinarily be built-up by an arrangement of one-, two-, and three-phase

equilibria. Four-phase reactions (four-phase temperature planes),proceeding

at constant temperature, are important in the melting ranges, but seldomly

5
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occur in the solidus regions oi systems involving condensed phases. Never-

theless, tht existence of four-phase temperature planes can be derived by

aa analysis of a series of temperature sections in the particular system( l )

The mathematical approach, therefore, concentratets on the establishment

of the conditions for the two- and three-phase equilibria at constant tempera-

ture and pressure.

A. TWO-PHASE EQUILIBRIA

In considering a two-phase field (Figure 4) in a ternary system,

the total free energy of a mixture is expressible in terms of the free energie3

and the mole masses of the indivi.lual phases. Let G be the total free energy,

and F1 u. F 2 the free energies of the coexisting phases. If phase i is present

in a quintity vi mnoles, and phase Z in a quantity of v2 moles, then

~F +V F2  (1)

The equilbrium state is characterized by a minimumir i the value uf F. Assurn-

ing conitant temperature and pressure, we see that the free energies of the

individual phases are concentration -dependent,

F1 = f yz, z()

F2 =f (xI', y it, z11)

With X, yp z', and x", y", z" denoting the compositions of phase 1 and 2,

F becomes then

F f (V1 v2' Y 1 , Z 1 x' y

6%

_
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Homogeneous Phase 

A XB B

Figure 4. Two-Phase Equilibrium in a Ternary System.

The Tie Line Through the Gross Composition (xyz)
Shows the Coexisting Compositions.

The relations existing between the concentration terms together with the require-

ment for the conservation of the atomic masses, result in the following six

boundary conditions:

V1 +v2  = 1

x+yl + zI = 1

X" + y " + " =-1

v x' + Vzx = X

+ vzy" y

VlZ vZ = Z
i2

7



where X, Y. and Z stands for the gross composition of the alloy. The location

of the minima is best evaluated by Lagrange's method:

8F \k

Proceeding in this way, we obtain eight determining eq.ations for the six

undetermined multipliers ak, as well as Y, and vz"

F, . al - a4. x1 - sYI - ay6zI = 0 (a)

F-c~- 4 x" =0 (b)
F2 - al - a 4. -asy" - a6z11 = 0(b

V1 a2-C'V 0 (c)

'r-c a-v n0 (d)

I .-  = 0 (e)

8F 2

V T7 3- 4 v2  = 0 (f)

v2 N'-yz - a %v z  0 (g)

From the last six equations, we obtain the important partial solution

- ~ T,p = L " - ](Za)

- T,p F- Tp (Zb)

aE)FE F T.

"-, = " - _JT (Zc)=- ] T p 70p
8 F 

a8

Eb B(2

I ,Y 52 ,p [cFy2 6zr ~



which, together with the boundary conditions and the remaining equations (a)

T: and (b), can now be used to evaluate the undetermined multipliers; this ultimately

yields the equilibrium conditions for the general case of the two-phase equl-

llbriun.

Geometrically, the solution represents the manifold of all

double tangent planes to the free energy surfaces of both phases, and implicitly

contains the well-known thermochemical relation, thatin the equilibrium state
I!

the partial free energies of the components are the same in all coexisting

7phases.
We shall, however, not perform the evaluation of the general

condition equations, since the arithmetic is quite involved and the applications

of the resulting equations to actual ternary systems is too laborious and time-

consuming in order to be of any practical help. They retain a certain use-

fulness in pseudo-systems of elements or compounds of equal stoichiometry

and structure since for these cases the free energies of the boundary phases

cancel, and the course of the tie lines in the two-phase fields becomes a func-

tion of only the solution terms(Z).

In many instances, and this applies especially to systems involv-

ing semi- or non-metals, the intermetallic compounds formed are either

nearly perfect line compounds (true for most silicides and borides), or forn

* defect solid solutions, which are characterized by a similar variation of the

free energies across the homogeneous fields (carbides and nitrides). This

affects the appearance of the ternary equilibria such that the boundaries of

Xthe one-phase regions are nearly straight lines; running parallel to the

metal, - metal 2 -bases. The conditional equations can then be substantially

Vr *A treatment of the general case for interstitial-type compounds is given in
E.Rudy:Ta-W-C System (AFML-TR-65-2, Part II, Volume VIII, March 1966).

9



simplified since we may take the concentration term of one of the com-

ponents, say z, as independent of x and y, i.e.,we permit the free energy to

be varied only by the relative exchange of A and B. Proceeding in this way,

we have:

x' + y' const = a (ax' -8y')

Z' const' = 1-a (8' 0)
2

xt + y1 = const" = b (8x"= -8y")

Z1 = const' = 1-b (8z": 0)

Substituting into the partial solution from Lagrange's equation, we obtain the

two equivalent conditlons(3a) and (3b).

aTI][S] (3a) f I

8d T, p LaX-2i T, p (

[a- 1],[8F 2
T,p L T, p (3b)

We note the formal analogy of these equations to the conditional equation for

binary alloys in both cases. A tie line connects two points of equal free energy j

gradients; however, due to the additional degree of freedom, the single tie

line in the binary system splits up into a aJ multiplicity (d tangent planes with T= J

const) in the ternary case. Taking the -example shown in Figure 3, it is seen that

a change of the significant parameters, in our example the exchange of atoms

A and B between the two solid 3olutions, alters the concentration and hence

the free energy of both phases in the direction A=B, and the gradient, therefore,

has to be taken along the same path.

10
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A few simple considerations will show us the usefulness of

these equations. Assume, for the sake of simplicity, ideal mixing between
I

t both solid solutions (A,B) and (A#B)C. Since we consider only changes in

the partial lattice (A, B) to be significant, we base the calculations on one

gram-atom of A+B in both solutions. In this way, we obtain as the free energy

for the solid solution A-B,

:x. ++x.x~n + xIn x
(A, B) A A B FB + R.XAXA B B

and in a similar fashion for the free energy of the crystal solution (A,B)CI

F xA* FAI B +x. + RT (x In x' + x -I
(AB)C AB BABC+A B xB)

xA XB . .Atomic fraction of A and B in (A, B)

X AXB....... Relative mole fraction of A and B in the
solution (A.B)C. (x'+ xB 1)

Differentiation and rearrangement yields the equation

X" B x

XA Bn FBC- FB- (FAc-FA)- R InxA xB

Substituting the more easily obtainable free energies of formation &Ff. for the

rfree energies,

=F -F -F
"fBC BC B C

I

fAC -FAC" FA CU

we obtain the final relationship for the tie lines of this partition equilibrium:

R(
RTIn K --- ~BCA-FA.C (4)

{- II11



The constant K abbreviates the expression

XI
XB xAk

-xA

and we may interpret it as the equilibrium constant of a reaction

< A> + <B > <A >B>(A.B) (AB)C (A,B)C+ < (AB)

,&FfA and AF are the free energies of formation of the binary alloy phases
LAG £BC

AC and BC at the temperature T(p = 1 atm).

From equation (4) we derive readily, that the relative distribu-

tion of A and B in the solution (AB) and (AB)C is a functibn of the stabilities

of the boundary phases; for equal stabilities, i.e. AFf 0  = AF the
fBC LAC'

relative concentrations of A and B in both solutions are equal. With

AFBC < AFfAC (BC more stable than AC), the concentration of B in the

solid solution (AB)C appears higher than in (A,B). The reverse is true for

the case AF > FfAC (AC more stable than 13C).

The free energy of mixing increases with increasing tempera-

ture and hence tends to equalize a given free energy difference AF 0 - AFLAC.

For the (hypothetical) limiting case T--. oo we obtain independent of the free

energy differences, equidistribution, xA = x and x B=

To illustrate the method and to demonstrate the graphical

solution method, we may treat the foregoing example numerically. Let, for

example, the free energy of formation of the binary compound AC be

-4.574 cal/mole and AG = -2287 cal/mole. We want to know the equi-
BC

librium constant K as well as the tie line distribution for 500*K and 2000*K.

12.



According to equation (4)

RT in K = AFfC - AFAC 22Z87 cal/mole,

K =K (500-K) =10

K=K(COU-K) =1.779

The knowledge of the equilibrium constants K defines for any alloy (A.B)

the compositions of the products, which will be formed upon exposure to the

component C. From the decreasing slope of the tie lines with increasing tern-

* peratures (Figure 5), we derive, that the reactions tend to be less selective

* at high temperatures. i.e. the relative distribution of the components A and

B becomes less preferential.

K=10 Kc1.78
AC BC AC 1C

__ B

60A0

00 
______K T=20

24000L
0 . . . .

CONCENRATIO

z igre5 GapiclCostutin f h Te insfrm h
___Crvsadfet_ fTmprtreo h

-2000o qulirim

-4000 T20013



For direct comparison purposes, but especially in those

instances, where the solutions cannot be treated as ideal, it is preferable to F
perform the evaluation graphically. For this purpose (equations 3a or 3b) we

plot the gradients of the free energies as a function of composition; the hori-

zontal intercepts between the curves at the chosen values xA or xA, imme-

diately then yis the equilibrium compositions (Figure 5). 1

B. THREE-PHASE EQUILIBRIA IN TERNARY SYSTEMS (Figure 6)

The derivation of the conditional equations for the three-phase I .

equilibrium is performed analogously to that for the two-phase equilibrium.

However, in view of the bulkiness and complexity of the resulting equations,

which make them of only limited use, we shall not stress the general ca&e but

rather concentrate on the simplified treatment which we will need for our

subsequent discussions of actual systems. A brief review of computer ap-

proaches for the solution of the unrestricted problem will be given in a later

section. We have to consider an equilibrium Ax,B y,C ,- A,, B y,Cz, , -

A,,,By 11,C ,,, where z', z", z"' have individually different, but otherwise

constant values.

Since three phases are involved now, the total free energy of -

the phase mixture becomes

F =vIF I+ v 2F z + v 3 F 3 ,

with F, W Y 'with * (x', y', z')

Fz z (xII, y"I, z"1)

F 2 4 2 (x'", y'", z'")

14



Homogeneous Phase 3

A6 C

!,

iI Homogeneous

Homogeneous Phase I /

XB

Figure 6. Three-Phase Equilibrium in a Ternary System
(General Case).

!I

Together with the boundary conditions, which results from the relations existing

between the concentration terms as well as from the conservation of the atomic

masses ,we obtain, in the well-known manner after Lagrange to obtain the mini-

mumthe equations:

F I -I X' -a 2(a - x) - a3 (l-a) -a 0 (a)
[4

2 1  -, CL2 (b- x")-a 3 (1-b)-a 0 (b)

F -a x"'- a (c - xtI' ) -C (1-c) - 4  0 (c)
3 1 2 34

. 8F,

V1 75-=, I,+ V 0 (d)

L 15
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8F
V3  8 , - V + CLv 0 (e)

3  8 , , ~ v1 3 + a 2 V 3  0

with vI + v +v = I
wih 1 2 3

x' + y= const' a

x" + y"= const" b

X111 + y, const"'= c

From equations (d), (e), and (f) we obtain t1v important partial solution:

I , T, p I T.p [ -j T.p= " -z (5)

With this equation alone, however, the three-phase equilibrium

is not yet uniquely defined. An infinite number of solutions would satisfy

relation (5). and we need an additional condition in order to reduce the possible

solutions to only one. For this purpose, we turn to the remaining equations

and eliminate the imdetermined multipliers o. through a4"

Rearrangement of eqLaations (a), (b), and (c) yields

F1 -x' (a,-a) - a -3% + '
3 a-a 4  -- 0

F 2 - X11-ab L -b - a  0

F3 -x'"(C- 1%) - 3 c-u. 3 + c - 0

Substituting relation (5) for al-ae and recalling the relation for calculating

partial (T1) from the integral quantities,

16
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I

A xA

we obtain j
ilB B + b 2 3CL ) - a ( ,-%31 = 0

3B- T + b 2.-a) - c (a -%3) = 0

Elimination of . Land a3 finally yields

..1. .B 2 3 - 1 3 3 3 (6 )
a-b b-c a-c

and, due to the symmetry of the relation, the equivalent equation

XA_ 2ZA FzA 3A zA_ F3A

- F __ (7)
a- a - , - c.

The partial quantities in equation (6) and (7) are on a gram-atom basis. In

practical calculations it is inconvenient to first determine the differences of

the partial quantities, and then to divide by the composition factors a, b, and

c in order to satisfy the conditional equations. Instead, if we base our caicu-

lations on a gram-atom of the components A + B, i.e.,if we express the com-

P pound solutions in the form (A, B)C i , we have for

Solution I = (A,B)C
u

SolutionZ = (AB)C
VV

Solution 3 = (A,B)Cw

1|-7
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FA U -FA() --
u) a a

- zA 1-b"-~~F A (v ) = " -- V -

and
aA 1-c

FAw C C

Substituting in equation (7) and rearranging the terms, we obtain the condi-

tional equation in the form:

(v-w) F + (w-u) Y + (u-v): 0 (8a)
A(u) A~vj A(w)

Performing the same operation for the component B,we receive the equivalent

relation

(v-w) FB(u)+ (w-u) F (v)+ (u-v) w 0 (8b)
B + (w-u F (w) 0

FA(u) FA(v) FA(w). Partial free energy of A in the solutions
(A,B)Cu . (A.B)Cv , and (A,B)Cw .

B B(u).' B(v.I w)... Partial free energy of A in the solutions
(A,B)Cu, (AB)Cv, and (AB)Cw

Equations (5) and (8) together now completely define the three-phase equilibrium:

From all coexisting composition triples admitted by equation (5), the correct

triples, i.e.,the compositions of the three phases, which have the lowest free

energy, are sorted out with the aid of equation (8). Equation (8) corresponds

to the law of the mass action in the form of the well-known thermodynamic-

relationship for the equilibrium state:

18

- .-!----1 i- - - -- - - - - - -----



V141= 0

where the v denote the mole masses of the zeacting species and the p, are

their thermodyiiamic potentials. The fact, that two equilibrium conditions

are required reveals that the law of mass action is not sufficient to locate

the three-phase equilibrium in terms of the individual equilibrium concentra-

tion of the phases.

Equation (5) and (8), will be extensively used for calculations

in actual systems. For the sake of convenience, we shall refer to equation (5)

as the "gradient-condition", and to equation (8),for reasons to be explained

later, as the "stability-concition".

III. DISCUSSION OF THE EQUILIBRIUM CONDITIONS ON MODEL

EXAMPLES

A. THREE-PHASE EQUILIBRIA RESULTING FROM MISCIBILITY

GAPS IN BINARY OR PSEUDO-BINARY SOLUTIONS

. This case is very frequently found in actual systems. Misci-

bility gaps in solid solutions may arise from large differences in the atomic

sizes of the constituents, where the resulting strain energies result in posi-

tive mixing terms, and ultimately may cause the solution to separate into

two distinct phases. As a first approximation, we may take account of the

=- nonideal behavior by adding a. positive enthalpy term to the ordinary mixing

quantities, the later being entirely due to the entropy of mixing. The most

common approach,using a parabolic form, is that originally proposed by

Van Laar, and the solutions which obey this bel-avlur are usually referred

to as "regular solutions". The free energy of mixing for the regular solution

is given by

19



mix+ r xl
i m~~xA = 'A" B RT (xAlnx x+x B In xj)-A B XAXBA AXBi )

where a is the so-called interaction parameter. The critical solution tem-

perature for the regular solution is derived from the condition, that the

first and second derivative must vanish at the critical point, and is given by

T -Tc ZR

Due to the symmetry of the terms, the critical point is located at x = and

II
the miscibility gap by the regular solution model is symmetrical with regard

to x

A typical case for a three-phase equilibrium resulting from

the formation of a miscibility g. a one of the compound solutions is show

in Figure 7. For simplicity, the same basic system layout as in the example

shown in Figure 3 ias been chosen.

The psaudo-binary miscibility gap is suLfficiently defined by

the relation

..+"1 , LT,p const.

x...... Being the composition of the terminal solid
XCG C2  solution.

The vertex of tlhe three-phase equilibrium at the solution (A, B) is located,

according to equation (5), at that point, where the free energy gradient of

the (A,B) solid solution coincides with the gradients of the solid solution

'I"



(A,B)C at the concentration points x and x The evaluation can be done

either by calculation or graphically as shown in Figure 8. To depict more

C

AC BC

A B

Figure 7. Three-Phase Eqlillbrium Resulting from a Miscibility
Gap in a Pseudo-binary solid solution.

F
clearly the existing relations, the equilibria were drawn on a rectangular basis
instead of the usual triangular one The following data were assumed for

the calculations:

AF 4574 cal/mole AC
fAG

Z'fBC 2287 cal/mole BC

AT 1000*C = 3960 cal/mole)

AT 1200*K (e2= 4750 cal/mole)

21
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The free energies of both compounds are further assumed to have the same

temperature dependence so that the difference may be taken as being independent

of temperature. Choosing the pure components A and B as the reference

T - 1300°K T =l00'K T =900KA I Bf AC C C

6000 3000 j 3000

o (O0C(A. 8 (A, 1oB)C

(AAB/)

4000 2000 2000

aI

.' 2000 lOC-1000j

0 0 0

0-2000 --- 1000 -1000 ,B

-4000 -00 -2000 I

00.5 1.0 0 0. . o
XBC) XB(XBC) X (X B i

- -- Meta stable

Figure 8. Appearance of the Equilibria for the Case of Nonideal
Solutions, and Graphical Determination of the Tie Lines. I

state, we obtain for the solid solution (A,B)

I
(AB !A xB RT (x'Aln x in x)

and for the solution (A,B)C:

=A" AF +x" AF +a;x" x' + RT (xA Bx +x) n X11
(A,B)C A fA C  B A A B n

I
The free energy-concentration gradients become then:

II
22t
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U

F

- LA Tap I_ 4 1 (l-A x')+Rbx -p--

S1 c" FA,+a(l"Zx'U) +RT~ I x-T
L xl' T ,p B B

These gradients are plotted in the lower portions of Figure 8 as a function of

the concentration xc and x' respectively.
B d

At 1300*K, both solutions are above the critical temperature,

and the only heterogeneous equilibrium in existence is the two-phase equi-

librium between (A, B) and (A, B)CI_x . At 11000K we notice the formation of

a miscibility gap in the solution (AB)C, with the consequent formation of a

three-phase equilibrium

(A,B)I- ss + (A,B)II - ss + (A,B)-ss

Finally, at 900*K both solutions exhibit miscibility gaps, and

consequently, two three-phase equilibria, each of which is surrounded by

three two-phase equilibria, appear. The construction of the tie lines within

the two-phase fields from the gradient curves follows the same route as

previously described.

Re-examining the equations, we arrive at the conclusion that

for the evaluation of such three-phase equilibria, which result from the forma-

tion of miscibility gaps in binary or pseudo-binary solutions, the gradient con-

dition is sufficient for the evaluation of the base vertex of the three-phase field.

fZ3
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B. THREE-PHASE EQUILIBRIA RESULTING FROM THE

ABSENCE OF ISOMORPHOUS COUNTER-PHASES (Figure 9).

This is the most common type of three-phase equilibrium

occurring in ternary systems. In view of its importance and of its interest

from the theoretical side. it will be considered in somewhat greater detail.

Figure 9. Formation of a Three-Phase F ield Due to the
Absence of an Isomorphous Counter-Phase
BC in the Binary System B-C.

Suppose, as shown in Figure 9. we have a system where the

phases AC Uand BC uas well as the pair AC wand BCw,, are isomorphous and

form a continuous series of solid solutions In one system, say A-C, we

2I4

Z4t

Ac____
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further have an intermetallic phase AC which does not occur in the edge-

system B-C. Due to the fact that the corresponding phase in the B-C

system is missing, the solid solution (A,B)Cv is ultimately terminated by

a three-.phase equilibrium

(A, B)C u + (A, B)Cv + (A, B)C w

Intuitively, we are inclined to assume that the range (A,B)v

will increase with increasing stability of the hypothetical phase BC v, for we

F know that the solution should extend over the whole concentration range if

such a compound would become stable in the binary :8-C system. We therefore

expect that the relative stability of the hypothetical phase BCv, (i.e. its free

energy of disproportionAtion into BC and BCw) will be the main controlling

factor for the size of the ternary range of the (A,B)C solid solution. The

general situation, shown for a binary system A-C with two phases AC u and

ACw, and a further compound AC of varying stability, is depicted in Figure 10
V

(Case I, read BC instead of AC

To d.scuss the problem mathematically, we best start out

from the stability condition (8):

(v-w) FA(u) + (w-u) FA( )+ (V-W)F 0

Basing the calculations on the components as the reference state, we may

replace the free enthalpy values by the respective free enthalpies of forma-

tior., i.e. we may write AF in place of FAC without changing the form
{u i

of the equation. Separation of the partial free energies into base- and con-

centration dependent terms yields

25
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Av-mix -mix -mix 0
(v-W)AF~k(U)+(w-uJAF;* )+ (v -W1A( w)''W +~.r(Wu)WA(V)(Vl Aw

I i0

\\ A Av

\

\ NAF Z  <0

\ .. (I Unstable)

N 1E

AZACON
\N

ASz <0: Eutectoid Point \ N
zN

ASZ >0: Peritect0od Point \\ | AFZAC \ AC"
\ "ZACv 0  \ /

- N Stable

Homogeneous Range ..
of Phase X

Figure 10. Stability Relations in a Binary System A-C.

I: AC Unstable with Regard to a Mechanical Mixture
ofCk and ACw.

II: Boundary Case. Designating the High (Peritectoid) or
Low (Eutectoid) Temperature Stability Limit of the
Phase AC V .

M: AC Stable.
V

A C  is the Free Enthalpy Change Involved in the Disproportionation
ZAG V

Reaction:

(w-u)AC -- +(w-v) AC + (v-u) AC

26



Where the AF m ix terms refer to the partial quantities of mixing,and the

first three terms correspond to the free enthalpy change of the reaction

(w-u) ACv -*(w-v) AC u + (v-u) AC w . .. * ZAC

-he quantity AFzA may be regarded as the free enthalpy of disproportiona-

tion (AF ZAC ) of the phase AC v into the neighboring phases A and AC w .
~V

Analogously, the last three terms, containing the partial mixing quantities

for the phases (A,B(C u0 (A,B)C, and (A,B)Cw& may be interpreted as thevu

corresponding free energy changes which result from the formation of the

solid solutions. The above equation may then be rewritten to

-mix

AF + AF 0 (9)
ZAG ZAG

v v

Due to the reciprocity of the relations, the analogous expression for the

component B is obtained.

g- :--mix

AFZBC + AFZB C = 0 (10)
V V

T

LThe three-phase equilibrium is therefore characterized by

the condition that the free enthalpy of disproportionation for each of the binary

compounds AC v and BC are brought to balance by the corresponding partial

solution terms. Knowing the solution behavior, relations (9) and (10) give us

a means, to separately determine the free enthalpies of disproportionation of

L the phases AC and BC from experimental phase-diagram data; this

allows us to assign free energy values to the hypothetical phase BC

r 27
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To determine the equilibrium concentrations from given

thermodynamic data. we first employ the gradient condition, which yields

the vertices of all possible three-phase equilibria existing across the entire

concentration field. Mathematically, this procedure is equivalent to reduc-

3
ing the so initially possible solutions (manifold of combinations between

three concentration variables, x, x', and x') to a manifold of only I [ sets

of interrelated triples (xx',x")]. These "compatible" triples of concentra-

tion terms are then inserted into equation (9) or (10); the correct composition

triple is that one for which these conditions are satisfied.

In view of the transcendency of the resulting equations, which

makes the arithmetic quite involved, the evaluation again is best done graphi-

cally. We will, however, not treat a model example, since the calculation

techniques will be demonstrated extensively in the application section, but

rather discuss a few important relations.

Relations (8) and (11) are valid for the equilibrium state; any

deviation from it will result in the appearance of a finite quantity, p, on the

right hand side; which essentially is a measure of the relative imbalance

between the disproportionation terms for the binary compounds and the mix-

ing quantities. We may therefore generalize condition (8) and write,

--mixA = AFZAc + AFzAc (11)

v v

-mix

B FZ +F Zc (12)
v v

Z8 {



and note, that at equilibrium

(x) = 0

When (x) assumes positive values, i.e.,

( (x) > 0

the solution (A,B)C v is stable in respect to mechanical mixtures of (A,B)C

and (A,B)C w . For the case that

* (x) < 0,

the solution (A, B)C v is unstable and disproportionates into mixtures of the

solutions (A,B)Cu and (A, B)C w .

We further note, that

A [xA(u ) 1] AFZAC
v

qA [ XAlv) 0 ZBC

cOB [XB(u) = A] = FZBC

rB [xB(v) =0 1 AFZA cy v

i.e. a perfect symmetry of the relations.[
So far, our relations have dealt only with partial quantities,

and we naturally expect the excess functions *A and 05B to describe only the

partial disproportionation quantities only. Consider now, for example, that

one would be interested in knowing how much a given crystal solution, in our case

the series (A,B)Cv stable in respect to the neighboring phases, i.e., we would

29
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like to know the integral free enthalpy of disproportionation of any given com-

position (A, B)Cv into corresponding (quasi-equilibrium) mixtures of (A, B)

and (A, B)C.

With both functions 4'A and '1B known, the integral free enthalpy

of disproportionation i(x) of the crystal solution (A,B)Cv would be given by:

nt. (XI) = xAlv)" )APXiA) +X.Bv)B(xLB)

or, since

"B(v) = Av)

,int. xl) = XA(v). 'A(X A) + [ l-XA(v)] • B (x i)

The concentration variables x A and xiB abbreviate the sets of terms xA(u),

X and MAfwh and x3(u)' , xBw) respectively; they are used to

help to indicate the components to which the concentration variables refer.

Thus, by agreement

x = I-XB.

In order to obtain the integral function 1)(x), we have to deter-

mine the interrelation between the partial functions Land 43(i). It

can be shown (Appendix I) that both functions are identical, i.e.,

OAlLA = CBliB)  i -

Substitution of this result into the equation for '1int.(Xi). yields

' int.(×i) = ,AlXiA) _ B(xiB) (13)

30
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We obtain, therefore, the important result, that the integral free energy of

disproportionation of a crystal solution is equivalent to the sum of three free

enthalpy of disproportiona.tion and the partial free energy of mixing for either

one of the phases participating in the equilibrium.

With these findings, we are now able to schematically list the pos-

sible reaction types (Figures lla and llb). Each case is found in actual systems.

The case shown in Figure 11(b) is of special interest since it indicates the

possibility for a ternary disproportionation of a solid solution formed between

two stable, isomorphous binary phases.

As described previously, the graphical method offers the most

convenient route to eva'uate the equation. A closed solution for + int (xi),

which often is useful for initial estimates of the gross behavior of the phase-

relationships in a system, can be given for the case whee the solutions behave

&ideally. For this purpose, we have to combine equations (5) with equation (8)

or (11).

Expanding relation (5), we obtain (T,p = const)

FLAC
Tu in XA(u)

-fA(u) = (AC -  f(BC )z l-
)U U A(u)

LkC vX(/ AFfC~) &"IBv} RT In xAV

[ AFfAC
fA C F In . . .. .n

f (A ) 'BC)I
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A C

+

0 ,

ACIVB,

AC,, BC

Fig. 1 la

T< T c  T Tc  T >TC

> 0

ILI

0 1 0b

ACW BCW

Ac. BC,
o x B 1 0 B 1 0 "B Fig. lib

Figure 11(a) and 11(b)

integral Free Energy of DisproportionationsF7MeC ,of a Phase Solution

(A. 'Cv,.and Corresponding Appearance of the 1ita seV Equilibria(Diag,.mrnatic).

Properties of the Function AFZMeC.:

FzMOCv ["B(v) 01 AFZACv

AFZMeC[ XB() 1] = FZBCv

kFZMeC v Z 0: Solution (A, B)CV Stable

AFZMeCv ! 0: Solution (A,B)C Unstable with regard to
mechanic mixtures of (AB)Cu and (A,B)C w

32



Equation (11) yields

A [xi] AFZAC + 'ZAiC

v-u w-v

A[XiA3 "ZA +RT in A(w) 'A(u)
ZAv XA(v)

with

AF'ZAC (v-u3 AEf(Arw) + (w-V) A5 FfAC -(w-u) A'f(AC

Substitution and rearrangement of the terms yields

W-u w-u
]x AF R InIA(v) (K-1 [1+xAv (K -I)1

r or, seeking 4 as a function X~)

B(x )r-B[xcB(v)]>AFA -RTl[xBv( -1) (u K 1

The coaustants KC,, K2 ,K; and K 2 are defined by:

RT In K =A'fAG V- fBC; V- AfAC +A"MC

.T n K2  A -AF -AFfA A~B2B fAG EBC
V v W W

K

K I 7 2
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and u, v. w have the -meaning previously allocated. We further recall that

the integral function *int.(x) represented by either cPA (XA(v) I or OB [XB(v)]

Instead of choosing the composition of the solution (AB)C v

as the independent variable. c(x) may also be represented as a function of the

concentration of the solid solutions (A.B)C u & or (AB)Cw . Obviously, however,

the concentration points determined by 4(x) a 0 then refer to the vertex of

the three-phase equilibrium at that particular solution.

A further relation, which is often useful in obtaining a coarse

estimate for the solubilities to be expected at high temperatures, can be

obtained by seeking the limiting value of 4(x) for T -* oo. Evaluation of the limit

in the well-known manner after L'Hospital, yields the relations

'ZAC
XB() ZAC ZBC

v u

ZB G vXA (u)[LT- oo AFZB - AFz
ZBCv ZAGu

The solutions are only meaningful, when AZAC &nd AFZBC are of a differ-

ent sign, i.e. one of the phases has to be unstable in the binary.

C. BINARY AND PSEUDO-BINARY SYSTEMS OF NON-

ISOMORPHOUS COMPONENTS

Up to this point, we were interested only in systems where

the solid solutions were formed between isostructural phases. Somewhat differ-

ent conditions exist, however, if we continue with two components which differ
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i- in their crystallographic framework. In general, temperature dependent

mutual solubilities will be observed, but the two solutions will always be

- i: separated by a two-phase field of finite width. The question arises now$ con-

cerning the relations between the magnitude of the atom exchanges in the two

structurally non-equivalent lattices and the energetical quantities. Furthermore,

* as a follow-on consideration, we will be interested in how deviations from the

ideal solution will affect the overall appearance of the equilibria.

Let A and B be the constituents of the binary or pseudo-binary

system. The crystal structure of A is designated with a, and that of B with P.

(A, B) is then the solid solution having the a-structure, and (A, B) the solu- I
tion exhibiting the structural characteristics of P. We further assume that no

ternary compound is formed across the concentration field, i.e., the free

energies of all other phases conceivable to be formed, shall be more positive

than those of (A,B) , (AB),, or mechanical mixtures of both.

We expect that apart from the temperature, the adaptability

of the individual components to the lattice of the partner will influence the

widths of the homogeneous ranges; i.e., we expect the relative atom exchanges

in both lattice types to be a function of the transformation energies AFB ( - a)

and AF (a - P) for the component B and A. The free energy-concentration
A

relationships prevailing in such a system are shown in Figure I. In order

to obtain a mathematical relation between the concentration and the free energy

[ quantities, we start out from the well-known thermodynamic relationship that

in the equilibrium state the thermodynamic potentials (partial free enthalpies)

of A and B, must be the same in both solid solutions. Hence

'-(a) A(P)
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Denoting the integral free enthalpy of mixing of the a-solid solution with

mix ix
a and that of with F and using the stable structure as the

AAF

1'

0

I i

x- ..Slblt iiifteaSldSlto
-I XB Xl

Figure 12. Relation Between the Integral Free Energies and

the~ Relative Atom ExchangeR in Systems of Non- --

isomorphous C omponents.

xI . Solubility Limit of the o-Solid Solution I
x. .... Solubility Limit of the -Solid Solution

AFA(a-> P) .. Free Energy Change Involved in Converting the

Lattice Type of A (a) into that of B (P). (Free
Energy of Transformation of A).

FI
'&B(P4 1 a)..Free Energy of Transformation P -.*a for the

Component B.
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* reference satet, we obtain -

-mix
A(o) A (a)

-mix
A(f) (a + P3) A (P)

- or

mix mix
A(a) A(P) AFA(a -P P)

and In an analogous manuer for the component B

-mix -mx (13)[ FB( -(i) = F (13) C)

i .If both solutions behave ideally, these expressions become, applying the

well-known thermodynamic relationship for calculating partial from integral

",. quantities,

FA F +XB -x-
A

We obtain then

-mix
FA a) = RT ln xA(a)

-- mixFA = RlnXA(P)

RT - - AFA(L.*) (14)XA(P)

and for the component B

fx
RT Bn B(pa) (15)f~ ~ ~~' (a) B )15
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With the following relations existing between the concentrations terms:

XB(P) -lXA(P)

XB(a) l -XAa .

B A(a)

For the case of non-ideal solutions, the partial quantities either can be derived

from known experimental data, the nonideality can be approximated by suitable

mathematical expressions. Thus, for example, using the regular solution

approach, we obtain the following equations:

-am i x  1- = +alX~) RT InX~a x

A(a) =  
L lXA(a) RTinxA(a)

Fmix 2 ~n

[ l-Xa - [() RT In - AF (

or, since for the majority of instances £ a = 4 = a

. [XA(a) XA(P)I [xA() + xA(P) _2J ] RT in A( [A"

Analogous expressions can be obtained for the component B.

From the foregoing equations, we derivethat the relative atom

exchange in systems between non-isostructural components is principally

determined by the free energy differences between the lattice types of the two

partners. Since the transformation energies are positive quantities, we

derive,for example from equation (16) that with increasing AFA(1 - P) the
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ratio increases, i.e. the width of the homogeneous range of the a-phase

Increases. while that of P narrows down. If we consider, for example the

special case, that FA(- +3) " AFB(P * c)' the homogeneity range of the

P -solution will be negligibly small.

Under these circumstances

mix
F B (P3) 0

and we obtain from equation (15)

mix
FB(a) B( +F a(3c)

For ideal solutions, this results in the simple relation:

RT In xl) AFB(p ) (17)

I- or, since

8 AFB(P * a) AH
T B(P -w a)

- 2T

in the familiar Clausius-Clapeyron-type of equation,

[i81n x

. - 'T RT 2

This relation, in the integrated form

AHIn x A-
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is commonly used to evaluate the enthalpy change AH from experimental

solubility curves ("heats of solution").

For practical purposes, it is often convenient to have a rapid

means by which the relative magnitude of both solutions can be estimated,

or, for the case of narrow two-phase ranges (small free enthalpies of trans-

formation of A and B, high temperatures), to obtain the concentration range

where the two-phase equilibrium is to be expected. For this purpose, we

seek the limiting expression in equation (16) and (17) for T-P go, and obtain

after LIHospital:

-A(a --o3
-xA r . AFB( -Pa)

i.e. ,the limiting concentrations of A and B are inversely proportional to their

free enthalpies of transformation.

As an example, let AFA( a  P) be 100 cal/gr. -At., and

= ZOO cal/gr. -At. With these values the approximate mid-point

composition of the two-phase range a + P will be at

B  1 -x A  1l 2 or xA 0. 5 5 ,
xA  1A

i.e., the P-range extends further than the homogeneous field of a.

In order to demonstrate the applicability of the equations dis-

cussed in this chapter and to show the possible variations in the appearance of

the equilibria due to nonideal solution behavior, we shall consider one example

in somewhat greater detail.
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We assune two structurally different components A and B,

with B transforming at T into a lattice type equivalent to that of A. Without

seriously curtailing the generality of the results, we shall use the regular

solution approach to describe the deviation from nonideal behavior, and we shall

also assume that AG A ( a - P) > > AGB(P -a)' so that we may neglect any atom

exchange in the component B. This helps us to simplify the arithmetic.

Including in equation (17) the nonideal~ty terms, we obtain

Sl-x] + RT In x &F
xBB (a) B (P.- a)

2500 3Tu 000
' = 0 (ideal)

-- e90 5940 cal/Mole

2000 / 250 --- Tu

1500 2000I

1 •/

! .. b./

1000 1 n1500C
E4ec 7920 Cal/mole

- - t10300 co/Mole

500 A1000
A03 A 0.5 B

CONCENTRATION, X

a. b.

Figure 13a and 13b.

Effect of Non-ideal Solution Behavior on the Phase -Equilibria
in Binary or Pseudo-Binary Systems of Non-Isomorphous
G ompo~ients (Regular Solutions).
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Assuming, for examPl;AHB(- = 1500 :al/gr. -At., T =

Z500"K, and a linear temperature dependence of the free enthalpy of trans-

formation, we obtainfor various interaction parameters a,the phase relation-

ship shown in Figure 13a and 13b. The solubility curve for 4 = 0 (ideal

solution) is shown by the solid curve in Figure 13a. For the case that

.B( --o a) at the critical dissolution temperature , Tc is slightly more
1

positive than the integral free enthalpy of mixing at x 7Z we observe a

strongly anomalous course of the solidus line, i.e.,a strong increase of the

solubility within a narrow temperature interval in the vicinity of T . If
c

mix IF > AF at T= T, andx=(TC) B(P3c -1c0

within a certain concentration range,the solution splits up into two isostructural

phases, and a monotectoid reaction isotherm is introduced into the system

(Figure 13b). Phenomenologically, the appearance of the nonotectoid can be

thought of as arising from the interaction of the miscibility gap in the a-

solid solution (controlled by the nonideal solution behavior), with the solvus

line of a (controlled by the free energy of transformation of F

B(P -* )

Finally, we shall briefly mention an equilibrium case which

is of importance in the thermodynamic evaluation of certain binary or pseudo-

binary systems, and which also serves well as an introduction to a more

generalized view of free energy-concentration diagrams and the energetic

relationships of intermediate phases to their constituent elements. The outline

shown in Figure 14 shows the principal relationships for the appearance of a

foreign lattice type,Pin a system of two components A and B whose lattice

types are designated with a and -y, respectively. The conditions are analogous
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to those for the appearance of eutectic malt if we replace L (liquid) for

f3. The conditions for the non-variant (p = const) equilibrium, designating

the stability limit of 13, can easily be dex ived from the condition that the V

a( --)

11I

FA(.)F
ii

-x-i X
1  

B 34

Figure 14. Principal Relationships for the Stabilization of a
Foreign Lattice Typepfin a Binary or Pseudo-Binary
System.

Solidus Lines: Free Energy Variations Within the Homogeneous
Ranges.

XI, XII and XIH,XIV: Phase Boundaries of the Solutions a,, and y.

chemical potentials of the components A and B must be equal in all three

phases, i.e.,
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A(.) - (3-A(y)

7B (a) 7B(P) 'A(,y)

Th,. -g tour equations are of the type

€i (XOxPA x T) (i -Y.4)

containing as constants the free enthalpies of transformation AFA(a- P)'

AFA( - Y), AFB(, _ a), and F .From these equations To, the temperature

of the reaction isotherm, as well as the equilibrium concentrations of the three

coexisting phases, can be evaluated. At temperatures above or below the reac-

tion isoiherrn, the two-phase equilibria a + P, P +-y, and a + y, are evaluated

separately in the previously described manner.

Reviewing our findings and discussions in the previous sections,

we note that in a number of in;tances hypothetical, that is, to say, in the t

boundary systems unstablephases enter the calculations as quantities neces-

sary for the interpretation of the phase relationships in the combined systems.

A somewhat closer examination of the conditions reveals that as a minimum

requirement for the calculations, the stabilities of all binary la.ttice types corn-

bined have to be known.

Thus, if for example the stable lattice types of the combined

binary system A-C and B-C are differentiated by a, ,y,6, and q, of which,

say, a ,Y, and g occur in A-C, and a, P, and 6 in B-C, it is required that for

the system A-C the theimodynamic stability of the hypothetical phases P and

6 be known. Similarly, the stability of the phases y and e in the edge systemA
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B-C have to be defined in order to be able to carry out principal predictions

regarding the phase relationships likely to be found in ternary system A-B-C.

-These calculations) however, would still involve certain limitations, for they

interpret the ternary phase-relationships only in terms of the five pregiven

lattice types a. P. 7,6, and a . For greater assurance of the calculated

data, the (concentration-dependent) sL-.bi-..ty of all lattice types, which coa-

ceivably may become stabilized and hence may play a role in the higher order

systems, must be computed and compared with the stability of the other phase

solutions. This requirement ultimately leads to the necessity of establish-

ing more generalized, but especially more complete, free energy concentra-

tion diagrams (Figure 15), which, upon extending the relationships to include

the component phases, would allow us to separate base- and concentration-

dependent terms for each lattice type considered.

It is obvious, that it is principally impossible to determine

*thern-odynamic quantities for hypothetical phases by calorimetric means;
iI

from the conventional AF-x diagram, therefore, only lower limits for the

stability of hypothetical phases can be derived. On the other hand, by revers-

ing the procedure, i. e.,by evaluating experimentally established phase relation-

ships (which are not necessarily restricted to solid-solid equilibria, but also

may include solid-gas or solid-liquid phase equilibrium studies) with regard

to the stabilities of the phases participating at the equilibria, we are able to

extract stability data for hypothetical phases Thus, by investigating a

sufficiently large number of suitable sets of component combinations, we have,

at least in principle, the means available to ultimately provide a reasonably

complete mapping of the thermodynamic characteristics of all crystal types

which are of relevance for the particular group of systems.
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ige15 Geeralize Free Energy of Transfornation of t e Stable

Lattice (cy) of A into a lattice type j.
(j= ai,,,y...w) [ ,FA(o. =c) =0]

Free Energy of Transfornation of the Stable
a- i) ... Lattice (y) of B into a Lattice Type j,.'

(j =0,., ,y...w) [.FB(P_ 3) =0]
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D. COMPUTER APPROACHES

* In the foregoing thermodynamic approaches for the calculation

of phase equilibria, we had to preassume certain properties in order to

sufficiently sxnplify the arithmetic tu allow the equations to be solved manually.

We had further restricted our discussion to cases# where two related elements

A and B show a similar behavior towards the third component C.

A relative disadvantage of the simplified method lies in the

fact that it does not allow a predicdkn of the course of the boundaries of the

!- one-phase ranges. While this shortcoming may be negligible for systems

involving quasi-line compounds, in combinations involving phases with wide,

but especially markedly different homogeneous ranges in the binaries, the free

energy variations due to changes in the overall stoichiometry of the phases

. (contents in C dependent on the A-B exchange) have to be taken into considera-

tion in order to obtain results which more closely describe the actual behavior.

Geometrically, the general solution of the conditional equa-

tions for a two-phase equilibrium in a ternary system represents the manifold

of the tangent points of all double tangent planes to the free energy surfaces in

the concentration-temperature space. The solutions are, therefore, of the

form

! (x,' y. z', T) 0

r ,2 (x". y". z". T) = 0

The boundaries of the one-phase regions at a given temperature (p = const)

*-re *he Lat ectin cuirye_ h -tween the surface iven by the solutions
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S(xib Yi z TO), and the planes resulting from the concentration relation- t

,ship x + Y + z 1.

For a three-phase equilibrium, the general solutions repre-

sent the tangent points of all triple tangent planes to the free energy surfaces L

of the three phases. The multiplicity of solutions is oo0. Hence, the solu-

tions for the equilibrium concentrations of each individual phase is of the

form (p const)

(xv Yis Zi T) =0

4I(xis Yis zis T) 0 i

(x i + Yi + i =)

With T const (temperature section), the concentrations are fixed and

correspond to definite triples (x i , Yi, zi)"

For the numerical evaluation of the unrestricted problem, the

general conditional equations derived from the minimum conditions and the

existing constraints after the method by Lagrange are only of limited use;

the arithmetic in obtaining the equations in a form suitable for programming

is quite involved and circuitous, and convergence problems are difficult to elimi-

nate. Similar difficulties are encountered WAhen making use of the well-known

thermodynamic relationship that for the equilibrium state, the thermodynamic

potentials of each component must be the same in all coexisting phases. The

most direct approach for a numerical evaluation of the unrestricted problem

with the aid of a computer, consists in using the original minimum requirement

for the free energy, together with the existing boundary conditions.

48
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Tho mathematical problem can be stated as follows: Given

in a function, , which Is composed of a linear combination of a series of

functions i

0 T..i~i (I i 4)E iv -_

The themselvesare functions of concentration variables xi,, Yi zi, as well as

p and T; the following additional constraints exist:

1;v i = 1

~vixi : X

2;viyi = Y

Zv.. Z
I'

We easily identify < as the total free energy of the heterogeneous mixture of

*-the i phases, 4i as the integral free energy of the phases I, vi as the mass

fractions, x i, Yi, z, as the mole fractions of the components in the phases i,

p and T as pressure and temperature, and X, Y, Z as the gross composition

of the phase mixture.

We are interested in cases where p - const. (1 atm) and T

assumes a series of discrete, bat otherwise constant,values for a particular

set of computations (temperature sections). According to the phase rule, and

disregarding the occurrence of four-phase reaction isotherms at specific tem-

peratu:es, the values of I are restricted to I -5 i - 3, i.e., the number of co-

r existing phases are restricted to a maximum number of three. Thus, the

problem reduces to a determination of the of the coordinates x, y. z! for

4irI
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for the maximumn of € for a series of prechosen values X, Y, Z; and Oz  6 ....

being pragiven functions.

Actual calculations are performed in a manner that the approxi-

mate phase relationships in the system are first computed using the simplified j
technique previously described. This helps to limit the pregiven scanning

range,x iby, 'zi.for a given set of gross-compositions (XYZ) in the calculations.

After choosing a series of gross-concentration points (XYZ) from a %.wo-phase

range, the total free energy is computed for a series of combinations .x,,y 1 , ] -.

and x2, y2, z 2, with the density of the concentration points within the pre-

determined concentration area selected to be in accord with the

desired accuracy (grit spacing usually . 5 atomic percent). The stable corn-

binations (xly'z,) and x* yz*) are those for which it assumes the lowest value. .

After the tie line distribution in all possible two -phase ranges I

has been computed, the three-phase equilibria are considered as the next step.

This calculation is simplified by the fact that the compositions of two vertices 1I

from the goo manifold of "compatible" three-phase combinations are already

known from the calculations of the corresponding two-phase equilibria, i.e., I

the computer scan is limited to obtain the "compatible" composition of the -

third vertex. The final step in the evaluation, which sorts out the correct set

of composition triple from the ool manifold of solutions, consists of comparing

the free energies of a series of three-phase mixtures with corresponding one-

or two-phase mixtures, the stable combination being that one having the lower

value. This calculation is simplified by the fact that the composition of two

vertices are already known from the corresponding two-phase equilibrium, J

i. tnii scan---- limite Only to one phas., from which the composi-

tion of the third vertex is then obtained.
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A few more words have to be said about the nature of the

functions the integral free energies of the homogeneous ranges in the

ternary ranges.

The rture and type of function to be chosen will depend on

the type of solid solution formed in the system, and hence are structure-

dependent.

The free energy of mixing of substitutional types of solid solu-

tions, where all three elements have to be regarded as equivalent canfor

most purposes, be adequately approximated by the vanLaar expression,

IMI
jmixF =zj " ixixj + RT ijx i in x

where the e are the corresponding interaction parameters of the pairs i -j
I3

and the x i denote the concentrations of the components i.

For the thermodynamic description of the phases, vacancies

are counted -- depending on the type of lattice site involved- as equivalent

to either substitutional or interstitial elements.

Ternary interstitial types of solid solutions generally can be

classified into two groups. These, with a common interstitial element C,
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which typically would involve systems of two metals with 4n interstitial

element, and, on the other hand, solutions, where the two interstitial ele-

ments are didtributed within the host lattice of a carrier element A. Typical

cases would be systems consisting of one refractory transition metal with

two interstitial elements such as Ti-C-N, Zr-C-N, Zr-O-N, etc.

A characteristic of all latter types of compounds is the fact

that practically no atom exchanges between carrier and interstitia- sublattice

have to be taken into consideration. Thus, for example, a solution of two

metal monocarbides (AB)C at a certain carbon defect (v < 1) can adequately

be defined as a binary solution of (A B ), having free energies of FAC
xA B v

and FEC at the corresponding boundary compositions. Thus
V

1 =xA FAC +x FBG + Gi(xAxB)
V V

(x% kxB = )

To obtain the values per gram atom, the above expression

would have to be divided by I + v. The functions F and F dscribe theACV BCV
free energy variation of the phases AC and BC v across their homogeneous

fields in the respective binaries and are structure-dependent relations. These

functions can be obtained either from experimental data, or by fitting certain

pieces of experimental information such as phase boundaries, known free

energy at a given composition, heat capacity data for the calculation of the

temperature dependence, etc. to established thermodynamic models. Using

the Schottky-Wagner theory of non-stoichiometric alloy phases (4),related cal-

culations on refIractory interstitial types of compounds have especially been

5z
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performed In recent yee- by L. Kaufmann and co-workers(5), achieving

remarkable agreement between calculated and observed properties. For phases

where the disordering parameters are beyond the permissible range of the

simplified Schottky-Wagner theory, the thermodynamic behavior of specific

16-9)crystal phases can be approximated by other suitable approaches'

In conclusion to this section, it may only be mentioned, that computer

calculations, using the methods described above, have been performed with

considerable success on model systems and are presently being applied to

the thermodynamic description of the high temperature phase relationships in

ternary metal-carbon systems. A detailed review of the results, however,

is beyond the scope of this repcrt and reference may be made to the series of

related reports, issued under a current Air Force program( 1 0 ) .

IV. APPLICATION TO TERNARY METAL CARBON SYSTEMS

We shall demonstrate the thermodynamic approaches exclusively on

ernary metal-carbon systems since the extensive experimental material

available for this system class allows a close comparison between theory and

experiment. We shall treat in fairly great detail the phase diagram tantalum-

tung sten -carbon. The phase relationships in this system are faizly compli-

cated, and therefore this ternary well serves to demonstrate the applicability
5

of the thermodynamic approach.

In the sections following the discussion of the Ta-W-C system, we shall

s-immarize the thermodynamic findings In other selected metal-carbon systems

and ,lso demonstrate the back-calculation of thermodynamic q-tantities from

experimental phase equilibrium data. A short review of the general features
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of the phase-relationships of transition metal-silicon-boron-carbon systems

will conclude our excursion into the field of ternary alloys. I
i

In the final chapter then, we shall try to relate phase diagram

and thermodynamic information to practical application problems, and

especially stress alloy compatibility considerations, and the significance of

partition equilibria for diffusion phenomena in multi-component alloys.

A. THE TANTALUM-TUNGSTEN-CARBON SYSTEM( 1 -1-)

In the binary system tantalum-carbon (Figure 16),two inter-

mediate phases, a subcarbide TaC with hexagonal close-packed arrangement

39835 le

4000- 4
,7+0. 1

120 + Q5
II

S300 4°

o2843 .oo 7' %

,.5 +_0.5 26 +0.5sI

2O Ta B-Ta2C I!, 2180"

200C /I
7I-19300 -,, .v49,.8

10ra-Ta2 C --

0 10 20 30 40 50 60 70 80

Ta - ATOMIC % CARBON -.

Figure 16. Tantalum-Carbon Phase Diagram. .
(Shaded Area: Preferential Precipitation of Metastable ,)
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of metal atoms, and a face-centered cubic monocarbide with an exteaded

range of carbon defect solid-solutions, are formed. Like the other subcarbides

of the refra ory transition metalri, the carbon sublattice in Ta C undergoes

an order-c'sorder type of transformation at elevated temperature. The metal

host lattice is not affected by this transition.

In the tungsten-carbon system (Figure 17),the arrangement of

the metal atoms in the subcarbide is the same as for TaGZC although the higher

disordering temperature suggests differences in the degree of order in which

the N carbon atoms are distributed among the ZN lattice sites available in the

structure.

6-3600

3600 100
' -3423t1 I.I

3400\ -1
3200 - -

2747 t 80 L*C

\ 39
3000 L

W 2776±5" 2735-6"

;2800 - 2746127 * W 5L 1 1

/1 / C (tub) 50E
20 <0.5 /25.6 _

260

SI I I I I1E 20 30 40 50 60
- Atomic % Corbon

Figure 17. Tungsten-Carbon Phase Diagram.
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A cubic phase,analogous to TaGoccurs as a high temperature

phase at considerable substoichiometric compositions. In addition to W 2

and WC1 x(B1), a monocarbide with a simple hexagonal structure and ordered

distribution of carbon atoms is formed in the equiatomic concentration region.

The body-centered cubic metals form a continuous series of

solid solutions ( 1 3 ' 14, 15)

The phase relationships in the ternary alloys system are shown

in consolidated form in the ternary constitution diagram shown in Figure 18,

while the intcrrelation of binary and ternary isothermal reactions are presented

in the familiar Scheil-Schultz reaction diagram (Figure 19). For our purposes,

however, it is much easier to work with the temperature sections (Figure ZOa

through Z0n).

In examining the phase relationships, we note that the tungsten-

exchange in the cubic monocarbide gradually increases with increasing tem-

peratures, until at 2530*G, the temperature at which the cubic tungsten carbide

becomes stable in the binary, a complete solid solution is formed(Figure 20h).

An interesting behavior is exhibited in the metal-rich region. At lower tern-

peratures (<2450°C), the expected solid solution between TaC and W 2 is

interrupted by a two-phase equilibrium Bl+metal, i.e., the solid solutions of

Ta C and W2 C are both terminated by a three-phase equilibrium in the ternary

pha.se field. Toward.3 higher temperatures, the ternary homogeneous ranges

of the subcarbides increase and the two-phase range monocarbide+ metal

solution,gradually becomes narrower. Finally, at Z450"C, both three-phase

equilibria merge into a single (critical) tie line. Ab3ve this temperature, the

concentration space is divided into two regions where either metal + subcarbide,

or subcarbide + monocarbide are in coexistence. The latter equilibria persist

up to the liquidus range.
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For the thermodynamic evaluatlon of the phase equilibria. H
the following assumptions and compromises are made:

1. The ternary homogeneity ranges originate at the

binary phases and are drawn as straight lines

across the ternary field.

Z. Since no calorimetric data are available, the

solution of the subcarbides is considered as

ideal in the calculations.

3. The metal solution behaves ideally.

4. The carbon-rich boundary of the B I-phase can

be described as a regular solution, having an

interaction parameter of & = + 6500 cal/gr. -At.

metal. The metal-rich boundary is described as

ideal solution. These data were derived from

the temperature dependence of the Bl-ranges in

partial systems MeC-WC( 1 1 )

The following thermodynamic data, which are based on values

compiled from the literature as well as on available phase diagram informa-

(11,12,16,17,18)tion , will be used in the calculations (Table 1). We further f

write down the free enthalpy differences, which will be useful for the calcula-

tions (Table Z and Table 3).

The free energy gradient - concentration curves for the solid

solutions formed between the various phases are

a. Metal solution

'rf (TFf(Ta W)= ST ln
xW

L C w Mi T, p _W

66



Table 1. Thermodynamic Data Used in the Calculation of the
Phase Equilibria in the Ta-W-C System (Values in
cal/gr.At. Metal)

Reaction Free Enthalpy Change j
W + C -- WC (hex.) AF =-8905 + 0.47.T

w + I/z C -. WC i/z IFfwcgz= -3, 150 - o.6Z.'T

W + C -+WC (BI) AFfWC: -3745 - 0.95-T

W + 0.71.C-*WCo,7#3 AFfWC O = -730 - 1.88.T

W + 0.61.C--&GWCO6 INB &FfWC 0.61 = + 340 - Z,08. T

Ta + C -*TaC &,F.TaF C -35, 300-1.80T log T+

6.48-T

Ta+0.71C-Tao.a l) AFfTaCo.. = -26,Z00 - 1.Z.T

Ta + 0.50C-.*TaC,/, AFfTaC/ : -19,680 - 1.19.T

Table Z. Differences in the Free Enthalpies of Formation of
Tantalum and Tungsten Carbides.

(Values in cal/gr.-At. Metal)

AFfTaC (hex)= -11, 080 ont.

AFfTAC" 3 - AFfWCo.43 (hex) = -14, 100

- fTaC. -AFfWc (hex)= - 16, 530-0.57. T

"fWCon - ALFfTaCOn (BI) = Z5, 500-0.68T

"fWC AFfTaC (B) = 30, 700-0.95T

AFfWC - FfTaC(WC-type) -14, 000 + 0.47 T
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Table 3. Disproportionation and Transformation Energies
for Tantalum and Tungsten Carbides.

(Values in cal/gr. -At. Metal)

Reaction Free Enthalpy Change

Wc(hex) _WCl(Bl) + xG (x= 0) AFzw G =5160 -1.4ZT ,

WG 1  (BI) -*(l-Zx)WG(hex)+ZxWC,/2 'F zwc (cub) = -4790+1.71. T

(0.08 < x 5 0.35)

WC 1/ 2 -w 0.70 WC.71 (B1) + 0.30 W AF2zwC 2635 - 0.71.T

TaC1/,-*0.70 TaCon =+ 0.30 Ta ".F7TaC = 1420 + 0.40-T

TaC (Bi1) -. TaC (WC -type) AFR= > 12. 000 cal.
R_

b. Subcarbide Solid Solution (calculated for y z 0. 37,

0.43, and 0.50).

[aAFf(Tao W)C+ x, "

L ax, "M 'fC "f TaC + rT _XTnW T,p y Y W

c. Monocarbide (Bi) Solid Solution (Calculated for

0.F 71

Ff (Ta,W) T p-x) - o.7-L 8x'w T, -.~'~ '~ a +R "

These gradients are plotted as a function of the tungsten-exchange in Figures

Zla through Zld.
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II

1. Equilibria In the Metal-Rich Portion of the System

In view of the anomalous behavior of the subcarbide solid

solution, our initial interest concentrates on the evaluation of the stability of

the (Ta, W) C solid solution and mechanical mixtures of metal plus monocarbide
I2

solid solution. Stability conditions (8a), rewritten for the disproportionation
of the subcarbicarbidGe (MeC and metal (MeGu) solid

solution according to

(w-u) MeC * (w-v) MeC + (v-u) MeCw ,

l (u -0)

becomes ('MeC = 6500)
w v W-V

w w
'I

2 x Ta xTa
AFl-" +RT ln
Z = v l-x' a) "t Ta

Ta XT

and v w-v
w w

2W W-F = _ (l-x' , ) R T n
zWC w ) R

x, x',x" ..... Mole fraction exchange of A or B in the
metal, subcarbide, and monocarbide solid
solution.

Although, A and B, strictly speaking, are not constants, their variation is

not critical, and we assume for the average stoichiometries of the subcarbide

and the monocarbide solid solution

v = 0.43 (.-30 At.% C)
I and

w= 0.71 (-,41.5 At.16 C)

7
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With these values, we obtain for the stability condition

U.06 0.394
2  

Xi a XTa R(x'&FZTaC 0.606.t ( Ta) + RT In-(Ta- aQ 3Ta T

and 0.606 0.394

2',' " W -

= 0.606t (l-x' ) + RT In x', R'(X'W)

Compatible triples of x * X1 and x' are obtained from the free energyTat Tat Ta

gradient curves in Figures 21b and Zd and are used to calculate the function
R (x)Ta (Figure ZZ). Composition x' is determined by the condition that

Rx (Ta
at equilibrium, R (x-T.) has to assume the value -AF i.e., we obtainTa ZTaC0 .4 3 '
xI a as the intersection points between the function R(XtT) and the lines
R~'a) -AF F 4
RI(X'Ta) = -AFZTaC0 43 ' Performing this graphical evaluation (Figure 22), we

obtain two intersection points for all temperatures below Z700"K; these indicate,

that at these temperatures medium compositions of the (Ta, W) 2C solid solution

are unstable in respect to metal + monocarbide mixtures.

In view of the reciprocity of the relations (equation 11),

it is obvious that the same result could have been achieved by plotting RI(xlt)

as a function of x1W . and intersecting these curves with the lines given in

RII(x'W) =AF ZWC 4

We have previously found (equations 10, I1, and 12),

that the functions 1A(XA) and 4B(XB)

+mix

*A(xA)= AFZAG + ZAc
v v

Amix
=zBG + ZBc

V V
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are identical, and are a measure of the Integral free enthalpy of dispropor- I
tionation of the solution (A.B)C into mixtures of (AB)C and (A,B)CW.

4000

20000

i 2000 -

1I 1000

.1750KI i

I " I I

5 20°K 25000 K 2'0O0 K 225d0K/ 1 75 0 0K

17500K! J2250*K / 1751e
I 2000OK

0 0.20 0.40 0.60 0.80 1.0
- WC ,1/2 - TANTALUM EXCHANGE, AT% TaCI2

Figure Z2. Ta-W-C: Graphical Determination of the Solubility

Ranges of the TazC and W2C Solid Solutions.

Since AFmix R(Ta), we obtain as the free enthalpy

of disproportlonation, 4?z(x), of the subcarbide phase into mixtures of metal

and monocarbide solid solutions according to.
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MeCO,4s -. jo 0.606 MeCo.. + 0. 394 Me

Me= (Ta, W)

A(X T 'ZTaC, .3 + R (xA)

BlxV) = AFZWCo.,, +R'l(x'w)

z~x) "-A(X'Ta) -B (x

The resulting plot of 4)(x) as a function of x' is shown in Figure 23.Ta

For the sake of clarity, we note that

4z(xI'Ta = 0 ) = 'Fzwc0.j3

Z(XTa= ) = AFZ TaCo.43

As long as 4(x) is positive, the subcarbide solid solution is stable. <'(x) 0

yields the maximum solid solutility limits at the given temperature; for

4c(x) < 0, the alloys are either two- or three-phases, i.e.,single phased sub-

carbide alloys are unstable.

For all temperatures below 2703"K, 4(x) passes the zero

line twice, and is negative between the intersection points; as a consequence,

subcarbide alloys lying within this concentration range are unstable and dis-

proportionate. Above 2700*K, *)z(x) remains positive over the entire range

of metal-exchange, i.e.,solid solution formatiou between W2G and Ta C above

2700'K is complete.

With x'Ta at 4z(x) . 0 known, the eqilibrlum compo-

* sitions of the phases coexisting with the terminal Me 2C compositions
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at the respective temperatures can simply be read off from the correspond-

ing free energy gradient-concentration curves.

2500

1. 1750°K 4. 25000K
2. 2000°K 5. 2'70

0
K

2000 3. 2250°K 6. 30000 K

1500

500

-6-

E -500

-1000

0 20 40 o 0

-TANTALUM EXCHANGE, AT%

Figure Z3. Integral Free Enthalpy of Disproportlonation of the
(Ta, W)G Q Phase into Mixtures of Metal and Monocarbide
Solid Soueion.

~ Z(X) > 0: Subcarbide Solution Stable.

Pz(x) < 0; Subcarbide Solution Unstable in Respect
to Mixtures of Metal and Monocarbide
Solutions.
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We find (Table 4):

Table 4. Equilibrium Compositions of the Phases for the Three-
Phase Equillbria: Mono carbide + Metal + Subcarbide

Teprtre aRc Three-Phase "-W-RTrTbxee-Pha-se
OI Equilibrium Equilibrium

x ]IIII

_____ W W X W x,. XW

1750 0.815 0.07 0.005 0.995 0.79 0.165

zor 0.825 0.12Z 0.010 0.992 0.75 0.195

22.., 0.83 0.17 0.025 0.985 0.68 0.19

2500 0.85 0.25 0.045 0.97 0.58 0.17

700 10.91 0.38 0.10 0.91 0.38 0.10

The compositions of the two three-phase equilibria coincide at 2700K and

represent the critical tie line for the quasibinary eutectoid reaction

Me 2 G(X') -* Me(x ) + Me(xl')

In contrast to the true binary reaction, the ternary reaction is of the second

C

order, and the composition x x I , and x~'in terms of the above equation

of reaction are defined only for the critical temperature; for T < Ta two

three-phase equilibria, which are separated by a two-phase field, are formed,

and the equilibrium concentrationis are temperature -dependent (Figure 24).

With the thrue-phase equilibrium in the metal-

rich regi.)n of the Ta-W-C system fixed, the basic phase distribution in this

concentration area of the system is defined. The end-points of the tie lines
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for any gien gross compositi nihntefvto-asfelscnb

read off directly from the gradient concentration curves (Figures Zia through

21 d).

3000

Pk; 38%, 27000 K

S2500 Homog.

HP

~2000-

0 0.2 0.4 0.6 0.8 1.0
-TUNGSTEN EXCHANGE, A E~ -

I Figure 24. Calculated Vertical Section (Isopleth) Across
TaGI,. - WC1. . 5

Note origination of two three-phase equilibria at the
critical Point PK'
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2. TheThree-Phase Equilibrium MeG(Bl) +MeC(hex)

+ MeC (hex)

The next three-phase equilibrium to be considered

concerns the disproportionation of the cubic monocarbids phase into subcarbide

and tungsten monocarbide solutions. The solution will give us the homogeneity

range of the carbide solid solution as a function of temperature, and define

the terminal compositions of the restraining three-phase field at the sub-

carbide and the tungsten monocarbide solid solution.

The overall reaction can be written as

MeG (Bi) -- a.MeC (hex) + b MeC 1/2 .. FZMeC(BI )

Since the stoichiometry of the cubic monocarbid2, and hence a and b varies with

the metal exchange, we first have to determine by an iteration process the

tungsten exchange in the monocarbide solution, in order to pick the right param-

eters a and b, and then determine from the (concentration-dependent) binary
f

free enthalpies of disproportionation of the cubic monocarbide an average

expression, which accounts for this concentration variation. Performing

this calculation, we obtain as the average free enthalpy of disproportionation

for the cubic tungsten carbide

AF ZWC1,~x = -4790 + 1.71.T cal/gr.-At. Tungsten

it is noted,-that the value must be in accordance with the binary stability limit of

this phase at Z530oC. The temperature,(T c), at which the cubic tungsten

carbide becomes stable in the binary system is characterized by

80
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Hence, from the above equation,

T=- 4790 2800'K Z533*Cc?7

The stoichiometry factors a and b, obtained from the

iteration approachare listed below:~

T('K) a b

1750 0.15 0.85

2000 0.26 0.74

ZZ50 0.45 0.55

2500 0.61 0.39

2750 0.70 0.30

3300 0.71 0.2Z9

The overall expression describing the ternary disproportionation of the cubic

tungsten monocarbide is given by [e(B1)= 6500 cal/gr. -At. Metal]:

a b

-AF(1-x' + +RTln - -
ZWC (Bl) W 2 X

XWXW x' V: Tungsten exchanges in the subcarbide, cubic
monocarbide and hexagonal monocarbide solid
solution.

The relatively high transformation energy of the B 1-tantalum monocarbide

into a WC -type of lattice causes the terminal tie line of the two-phase field,

B I + WC-ss,to terminate close to the binary WC; hence, since x'2, 1.w
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neglect the corresponding solution term, obtaining the simplified equation

a r

w (Bl) (lW 2 + RT in -r- = R'(x)
IzW -x l Wxw

From the gradient curves (Figures Zlc and 25), we obtain the following corn-

patible concentrations x for series of chosen values for x' (Table 5).

Table 5. Partition Equilibrium Subcarbi.de + Monocarbide (B 1):
Compatible Combinations of x and xW ,

xIw  x w

1750°K 2000°K ZZ50°K 2500°K 2750°K

0.05 0.84 0.73 0.635 0.535 0.475

0.10 0.91 0.84 0.76 0.695 0.625

0.20 0.93 0.895 0.84 0.80 0.745

0.30 0.945 0.91 0.88 0.84 0.80

0.40 0.95 0.9Z5 0.895 0.87 0.835

0.50 0.955 0.93 0.905 0.895 0.85

0.60 0.955 0.935 0.915 0.90 0.865 a

0.70 0.96 0.94 0. 9Z5 0.915 0.890 ~

0.80 0.965 0.95 0.94 0.93 0.915

0.90 0.98 0.97 0.965 0.96 0.95

The function RI(x),computed with the values of x w and x listed in Table 5,

are illustrated in Figure Z6. The equilibrium concentration x'w for the

various temperatures Ti are the abscissa corresponding to the functional

values R"(x) = -AFzwc (Ti).
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More illustrative for the physical problem than ths

function RI(x) are the expressions describing the integral free energies of

disproportionation, which, for the present case, are a measure of the

stability of the cubic solution against decomposition into the hexagonal

5000-

123 4 56

4000

1. 17500 K
2. 20000 K3. 22500 K

3000 4. 25000 K
5. 2750 0 K
6. 30000 K

bm
2000 m

1000.

0 20 40 60 80 100

(TaC) - TUNGSTEN EXCHANGE IN BI, AT % (WC 0 61) j

Figure 26. Graphical Determination of the Base Point of the
Three-Phase Equilibrium WC + (Ta,W) C 1 (B1) + W 2C
at the Cubic Monocarbide Solution.

Note: The concentrations correspond to the maximum
tungsten exchange in the cubic phase at the
corre sponding temperature.

tungsten monocarbide and tungsten-rich subcarbide solid solution. As out-

lined in preceding sections, this function is given by
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f (x'W) = aFZWC + R'(x)

and is plotted, with x' W as independent variable, in Figure 27.

4000

3000

W 2000

S1000

0

1750OK 20000°2KO 5 d

-1000,

0 20 40 60 80 100

TUNGSTEN EXCHANGE IN B1, A'I%

Figure Z7. Integral Free Enthalpy of Disproportionation of the
Cubic Monocarbide Solid Solution [ (Ta, W)C I -] into
Subcarbide [(Ta, W)C 1/ 2 ] and Tungsten Monocarbide.

For

(x'w ) > 0

the monocarbide solid solution is stable, whereas for

401W',) > 0
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it becomes unstable in respect to phase mixtures consisting either of

MeC + WC, or MeG _x + Me C + WC. The maximum tungsten exchange in

the monocarbide solid solutions is given by (x'w) = 0, and hence is obtained

from the intersection of 4(x'w) with the abscissa 4)(x') = 0.

with the o 'dinate, i.e. the value of the function p(X'w) at x' W = 0, corresponds

to the free enthalpy of transformation of the cubic tantalum monocarbide into

a phase exhibiting the structural characteristics of WC; according to the data

presented in Table (1), this intersection point would occur at c'(x'w) 12,000 cal.

A simple hexagonal tantalum monocarbide is therefore of comparatively low

stability.

The functional value of 4(x'w) at x' W = 1 represents

the free enthalpy of disproportionation of the binary cubic tungsten carbide into

hexagonal WC and W.G, and is negative (WC1  unstable) at temperatures

below 2800'K. Above this temperature, the function .p(x'w) does not cross

the abscissa at any composition i.e., the cubic solid solution includes the

tungsten-carbon binary.

The theoretical findings, as shown for the maximum

tungsten exchange in the cubic solid solution, are in excellent agreement

with the experimental findings (Figure 28).
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Figure 28. Temperature Dependence of the Maximum Tungsten
Exchange in Tantalum Monocarbide.

3. The Three-Phase Equilibrium WC+MeC 1 _ (Bl) + C

The last equilibrium to be considered concerns the

equilibrium existing between tungsten monocarbide, cubic monocarbide solid

solution, and graphite; the overall reaction can be represented by

WC(hex) - WC (cub) + y'C ..... AF
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Since this equilibrium involves the carbon-richest compositions of the cubic

monocarbide phase, the value of y wiil be small. Furthermore, the metal

solubilities in graphite are negigible, so that we may consider it as pure

graphite in our calculations.

S ability condition (8), rewritten for the present case

becomes (W oo):

2 2RT n-AF ZW C = f (BlI W) 4WC (1-xI w + RT In x
xW

xW. . . tungsten exchange in the cubic solution

x W .. . tungsten exchange in the hexagonal WC

Since y in WCI x is small, AFZW C corresponds, in a close approximation,

to the free enthalpy of transformation of the hexagcnal (stable modification

of WC) into a face-centered cubic (BI) modification of WC, for whose stability

we have found (Table 2)

AFZ ArC - 5160 - 1.4Z-T cal/gr. -At. Tungsten.

Compatible couples of x andx could be obtained

from the gradient-concentration curves for the cubic and the hexagonal solid

solution; however, since we know (Equation 12 and 14) that the tantalum

excharige in the hexagonal WC will be governed mainiy by the transformation

energy of TaG (cub --P.hex.); the latter is a fairly large positive quantity

( + 12, 000 cal/gr.-At. Ta) as compared to AFzw C , we expect the relative
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exchange of Ta in WC to be very small. The calculation yields the follow-

ing solubilities as a function of temperature (Table 6). We, therefore, dis-

regard the solution term for the tungsten monocarblde phase, and obtain

-AFZW C =(Bl) (1 + RT Inx W  R" (x)

Table 6. Maximum Tantalun- Exchange in WC (Calculated)

Temperature Tantalum cx'lhange in WC.

K Atomic Percent

1750 3.5

2000 4.6

ZZ50 5.9

Z500 6.6

2750 6. ?

L 3000 5.0

The resulting plot of R"(x) versus the tungsten exchange is shown in FigureZ9.

The vertex of +hn. three-phase equilibrium MeC x(Bl) + MeC(hex) + C at the

cubic solid solution for various temperatures. Tifis determined, as described

before, by seeking the intersection points with the lines R"(x) = -AFzwC(Ti).

The integral function

Ixw) AFzw C I R" (x).

which compares the thermodynamic stability of cubic mcnocarbide solid solu-

tions with that of mechanical mixtures consist'.ig of WC and graphite,is pre-

sented in Figure 30.
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In analogy to the considerations for the previously

treated equilibria, the cubic solution is stable as long as

P(X) > 0,

and disproportionate s into tungsten mon-carbide and graphite for he case

that Odx) < 0. The vertex of the three-phase equilibrium is determined by

40(X) 0.

4

3

_ _ _ i
2t

0 1

1700 K 20000 K 2250' 250CPK 275&fK 30000 Kf

I II II - II -

0 20 40 60 80 100

-TUNGSTEN EXCHANGE, AT[%5-

Figure 29. Graphical Determination of the Base Point of the
Three-Phase Equilibrium Won-(TasW)Ct (Bl) -C at
the B 1 -Solid Solution.
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Comparing the base points of the three-phase equiibria

Me 1 (cub) + MeG (hex) + C (xW~, and Me2 C (hex) + MeC, (hexc) + MeCl1 (cuib)
I -I

* (XW) at ths cubic aolid solution, we find - as it should be-

X W(uI) > XW(I)

4

17CK2DWK dK z500*K 275CPK 3O*

2

L~J

-6

-B

0 20 40 60 80 100I. ,. - TUNGSTEN EXCHANGE IN B1, A1-.

Figure 30. Integral Free Enthalpy of Disproportionation of
Tungsten Moaocarbide into the Cubic (Ta, W)CI X
Carbide Solutions and Graphite.
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These results take account of the previously reported discrepancies of the

tungsten carbide solubility in tantalum monocarbide 9 showing it, within 1.

certain limits, to be dependent upon the carbon concentration of the alloys.

Hence, one would suspect that in view of the existing carbon defect in the

cubic monocarbide solution, solubility data collected on alloys along the

stoichiometric line TaC-WC actually refer to the concentrations of the ternary

equilibrium involving graphite. This is evidenced by a comparison of previous

literature data (19) with the present findings and calculations (Figure 31).

t

S2500

2000

4 -A. E. Kovalskii, et. al., 1946

SCalculated

1500 ,1
-I , i I I i i

0 20 40 60 80 100

TaC - TUNGSTEN EXCHANGE, ATLo-

Figure 31. Three-Phase Equilibrium (TaW)C1 x(B1) + WC+ C:
Temperature Dependence of the Composition of the
Base Point at the Cubic Solid Solution.
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The phase diagram data calculated in the previous

sections can now be used to assemble sections of the phase diagram for the

chosen temperatures. First, the ternary phase fieldeat a given temperature,

is subdivided by the known compositions of the vertices for the three-phase

equilibria. The con'entrations of the (arbitrarily chosen number) of tie lines

in the resulting two-phase fields are then determined from the free energy-

gradient curves and incorporated into the diagrams (Figures 3Za. through 3Zf.

C

0

{7
f2

//C
Taa

Ta 2CW C

Ta -ATOMIC f TUNOTEN -- W

Figure 3Za. 17500C

Although the approximation of the boundaries of the

one-phase ranges by straight lines is admittedly crude, the calculation was

able to reproduce the actual conditions remarkably well, and also yielded
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the correct temperaxre dependence of the equilibria. In fact, the calculated [
tie line distributions in the various two-phase ranges probably supersede the

F
experimental data in accuracy . The reason for this has to be sought in the

C[

CF

-Y-

/ i .

/

Ta - ATOMIC ' TUNGSTEN !

Figure 3Zb. 2000'K

fact that while the entire set of tie line compositions,calculated for a given

temperature, are functionally interrelated, each individual experimental tie

line independently carries the average experimental error. The scatter of

the individual experimental equilibrium compositions is therefore expected to

be more pronounced.
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changesDue to the lack of thermochemnical data, the phase

equilibrium cagsintroduced by the a-P3-Me C order-disorder reactions

were not specifically regarded in the calculations. However, since their

overall effect upon the phase behavior is only secondary, thlis neglection does

not affect the general validity of the thermodynamic treatment.

C

Fk

IiiI
S|lJ

JT|

a

Ta-AMNC '.TUNGOTE14 W

Figare 32c. ~z50*K.

The results of the preceding phase equilibrium

calculations would be capable of further improvement using the present

solution as the zero approximation in an iterative approach, or by refining

the compositions as indicated in a previous section - by computational
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C PI

.17
/'ii

r i

Ta -ATOMIC TUNGSTEN W

Figure 3Zd. 25000K.

C I

-C .'-

Ta WC

v Ta/

y w 2C

Ta - ATOMIC '~TUNGSTEN -~w

Fi.gure 32e . 2700 0 K.
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Ta'1 - TM C C hGTN-

T&C

" a.WCI- X

Ta2C WIC

Ta ATOMC %, TUNGSTEN

Figure 32f. . 3000°K

Figures 3Za through 32f.

Calculated Temperature Sections for the Ta-W-C System.

methods. Due to the lack of high precision thermodynamic data, however,

the latter approaches would essentially become reduced to a data fit tc the

ecperiment. With present experimental means, the certainty to which high

temperature phase-equilibrium data is rarely better than + 2 atomic percent, hence

the net gain in accuracy and reliability may appear as negligible. The value of

an exact numerical solution of the unrestricted problem has to be, therefore .-- at

least for the time being- considered more as principal rather than factual.
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B. BACK-CALCULATIONS OF THERMODYNAMIC QUANTITIES

FROM EXPERIMENTAL PHASE DIAGRAM DATA.

Following our coasiderations on the tantalum-tungsten-carbon

system where we were concerned mainly with the computation of the phase {
relationships from available thermochemical data, we shall now try the

opposite way, namely to demonstrate the applicability of the thermodynamic

metho:d to extract thermochemical information from available phase diagram

data. Apart from the fact that phase diagrams provida us with a convenient

source to derive thermodynamic quantities for hypothetical phases, which

are not accessible by calorimetric means, the need for such calculations often

may arise if pertinent data for the calculation of a specific system are not

available.

We choose the recently established phase diagrams Mo-Cr-C

and W-_r-Ct'"' as examples for the calculations. Temperature sections for

both ternary systems are shown in Figures 33 and 34. We consider the

W-Cr-C system first.

Tungsten and chromium form a nearly symmetrical niscibility

gap at temperatures below 1500G r23C6 exchanges at the equilibrium

temperature approximately 23 atomic percent tungsten, and the hexagonal

(W, Cr)2 C phase extends to a chromium exchange of 87 atomic percent. The It
equilibrium WC-Cr3C z is stable only below approximately 1500*C and is

replaced by an equilibrium (WCr) 2C-C at higher temperatures. As an approxi- .

nation to the actual behavior, the vanLaar expression for regular solutions F

will be used throughout the calculations. The interaction parameter for the
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C

I-C

wC C2

Figure 33. Section of the Phase Diagram Tung sten-Chromium -
Carbon at 1300*0.

Mo ~ C3

Figure 34. Secion of the System Molybdenum-Chiromium -Carbon
f ~at 1300*C.
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system W-Cr is derived from the critical point with the aid of the relation

TC

with the experimental value of T c  770K, i becomes 7010 cal/gr. -At.

metal. The corresponding interaction parameters for the carbide solid solu-

tions were derived from considerations regarding the relative atomic sizes,

the melting points of the phases, as well as the tie line distributions in the

two-phase fields.

1. The Two-Phase Equilibrium (W,Gr)-(W,Cr) 2C.

Conditional equation (3) applied to both solutions yields

AFf(Cr,W) 7010 x Cr (l-XCr) +RT [xcrlnxCr+(I-XCr )n(l- cr)]

and

AX 1 1-x +4000 (lIx'c) +
f(CrW)C ! 2 Cr f,CrC1 l/ C/)2 Cr

+ RT[x'rlnx'Cr+ (l-x'r) nl-rx' r)

Fa A F Cf (C r, 7010 (l-Zx ) +RTn Cr

L Cr T,p Cr

7Ff(C r, W)C; X
AF2 -AF + 400 (l-Zx' )RT Cr

fCrG fWC TC; ln x--
Cr T, p 1/2 Cr2 Cr

X r 1-x'r

AFfCrC -Fw/ 7010 (1-ZxC )-4000(1-2x' + RTIn Cr r

1/2 fW 1,, 2  rCr Cr
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X CFree enthalpy of formation of CrC1 /2  lt tutr

C 1 /z analogous to that of W2C.

6F f WC Free enthalpy of formation of WG 1 /Z.

x rEICr Mole fraction chromium exchange in W and WC,/2 respectively.

This difference in the free enthalpies of formation for the subcarbides can

now be evaluated from the end points xr and x of the experimental tie
Cr Cr

lines at the two solutions (Figure 33).

Performing the calculation, we obtain as the mean value and

standard deviation*

AFfr - AF =-1500 + 500 cal/gr. -At. Metal (T 1575*K).
fr1/2 fWC 1 //2

2. Three-Phase Equilibrium (W,Gr) Z3C 6 -(W,Cr) ,C-(W,Cr).

Stability condition (8), rewritten for this equilibrium

(u 0, v 0. 266, x 0. 436) becomes:

7*0./Il 0.39

- 0. 390 1 -x ?+ 0.61 j(1-xtt 2 
_6 ) 2 +RTln x' Cr I 'xGr

ZGr 0 .2 6 6  'Cr 3xC;r) ZlxCr KCr

Intracionparmetrsfor the solutions (W, Cr), (W, Cr)C/ 2

and (W. C r* ntracio I arame7ters0 4 000, an d 4 0 00 cal/g r. -At Metal)

xC x',x Mole fraction chromium exchange in tungsten and the solu-
Cr Cr' (2' tions (Cr, W), (Cr, W) C6 and (Cr, )

Insertin"7 Cie experimental points from the plaase diagram~, i.e. x Cr = 0.13,

-0. 77, and x" 0.65, we obtain the free enthalpy of disproportionation of
xGCr
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CrC6/z3 into a hypothetical CrC 1 /and chromium:

AFzc rC 6 /23 = 970 cal/gr. -At Cr (T = 1575'K).

Substituting tungsten for chromium in the above equation, and inserting the

equivalent concentration xW l-x, we obtain for the free enthalpy of dis-

proportionation of a hypothetical WG6/ 3 into tungsten and WCG/ :

F ! -1790 cal/gr. -At. W, (T = 1575°K)

i.e. a phase W23 i6 Is unstable with regard to a mechanical mixture of W C
and W.)

Analogous expressions are now written down for all other three-

phase equilibria in the system, and the free enthalpies of disproportionation

for the corresponding phases evaluated.

3. Three-Phase Equilibrium (W,Cr) C +(WCr) 3 C6 +(WCrC,

(T = 1575-K).

The corresponding reaction is (u = 0.Z66, v = 0.43,

w = 0. 436).

Mec0$, -- 0.964 MeGo.43  0.036 MeCo.26  o
ss sol Sol.

AFZr 43 (Cr 7 C 3 -type) + 370 cal/gr. -At. Cr.

AFzwc (Cr 7 C3 -type) - Z6Zocal/gr. -At.W.
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4. Three-Phase Equilibrium (Cr, W)C 3 -(Cr, W),C-(Cr, W) 3 C 2

(u 3/7; v i/z, w = Z/3

Cr /,-.7/10 CrC3 f +3/10 CrC2 / 3 AFZCrC/ 3 Z0 cal/gr. -At.Cr.

5. Three-Phase Equilibrium (Cr,W) C-(Cr.W) C -G
2 3

(T = 1863"K)

(u 1/2, v = 2/3, w o)

CrC2 / 3 -Crc 3 /2 +1/6 C F r 800 cal/gr.-At.Cr.
2/3Z~rC 2 1

WC2,1 (Gr G2 -type) W WC + 11/6 C -4100 cal/gr. -At. W

6. Three-Phase Equilibrium (WCr)G-(W,Cr)C-C(T=1863"K)
V2

WC --- WC 1/z + I/Z C AFzw c =1960 cal/gr. -At. W

CrC (WC-i.ype) -eCrC2 (W 2C -type) + 1/2 C 'FZrG = -5170 cal/gr. -At.Cr.

In this system we have the interesting ckse that

none of the lattice types observed in the one system, occur in the other. In

order to enable a phase diagram calculation, the stability of all tungsten-phases

with the structural characteristics of the chromium-carbon phases,and similarly,

the structure of chromium-carbides with structures analogous to WC and WC

have to be known. The calculation of each equilibrium in this system involves

data for at least one hypothetical phase. Hence, based only on calorimetric

data, not one equilibrium in the whole system could be predicted, or e-en estimated.
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Eccept for the monocarbide, which is missing at the I
chosen equilibrium temperature, the phase relationships in the Mo-Cr-C

system (Figure 34) are very similar to the system just treated with tungsten;

the thermochemical evaluation is analogous and the data obtained (M
MoO.I

4000 cal/gr. -At. Metal) are summarized in Table 7. For comparison pur-
r

poses, the data obtained from the W-Cr-C are included in the compilation.

The various structure designations (a, P ... i) refer to the following types

Designation Lattice Type I

a ........ MoG, W2C*

........ WC

y.........C C

8 .......... Crs C3  1
Cr 7C 3

A comparison of the data shows excellent agreement between the free energy

changes obtained from the phase relationships in the two (independent) systems. I

The free energies of formation of the stable chromium

carbides are available from the literature, and representative values, ta.Un I
froma rcen copiltio ( 1 6 ,17)

from a recent compiation , are given in Table (8).

*i

Mo2 C and W C differ at low temperatures in their sublattice order, however,
since the exchange of chromium tends to outweigh the differences, a special

distinction is immaterial for our present purposes.
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- i Table 7: Summary of Thermochemical Results on Chromium-Carbides
Derived from Phase Diagram Data in the W-Cr-C and Mo-Cr-C

* System. (Values in cal/gr. -At. Metal. T = 1575'K)

Free Enthalpy " of Reaction
From From

Reaction W-Cr-C Mo-Cr-C

CrC (y) . 4Z.Cr+o.58CrCA5(L) + 970 + 860

CrC7 /3"(6) -0.88CrCo.4(a)+0.1ZCICO.z 66( 4 370 + 330

CrC (a) 40.7CrS/ (8) + 0.3CrC,/ (,) - 320 - 220

CrC/,3 ( C) -*CrC 2 (a) + 1/6 C + 800* + 945

CrC (1) -+CrC,! () + 1/2 C -5170

F *T = 1873°K

Table 8: Free Enthalpies of Formation of Chromium
-, Carbides (Compiled from the Literature)

A AFf = A - B *T (cal/gr. -At.Chromium)

Carbide A B Temperature Range, OK

I Cr C -4270+800 0.40+0.1 298 - 1673"

Cr C -5710+800 0.81+0.1 Z98' - 1673'
CrC -6170+800 0.86+0.1 298 - 1673-

These data can now be used to assign free energy data to the hypothetical

chromium carbides derived from the phase-diagram information (Table 9).
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Table 9: Free Enthalpies of Formation of Unstable Chromium
Carbide Lattice Types (Absolute Values are Based
Upon the Data for the Stable Chromium Carbides)

A Ff = A - BT (cal/gr. -At. Chromium)

Carbide A B 1

CrC (WC-type) -5500 0.81+1.5

CrC (WC-type) - 650 0.90+0.5

CrC /(Bl-type) -2100 1.86+0.5

*From Mo-Cr -C

For phase diagram calculations, however, it is usually preferable to use

the differences directly as derived from the experimental sections, in order

to avoid an unnecessary accumulation of errors. In either instance, however,

it is advisable to countercheck the consistency of the values by back-calculating

the phase relationships using the data derived from the experimental sections

(Figures 35 and 36).

Compilations similar to those for the chromium carbides can

now be made for the chromium carbide-type lattice structures in the molybdenum-

carbon and tungsten-carbon system, providing us with base data for calculations

in systems involving these lattice types. We shall not go into any further detail,

since the relevant information has been collected elsewhere (16); however, we

will briefly discuss one aspect in the tungsten-chromium-carbon system, for

certain discrepancies between observed and calculated thermodynamic values

for the Me C phases initiated the search for, and finally resulted in the dis-

covery of the sublattice transformations, which were observed to occur in

nearly all subcarbide phases (9 ) in the meantime.
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In the evaluation of the three-phase equilibrium

(W,Cr)C-(W.Cr) 2 C-C on one of the preceding pages, a value of AFz wc-

1960 cal/gr. -At. tungsten was obtained foz the free enthalpy change of the

reaction

WG - WC1 / + /Z C

I C

I~ I /

7 AU C

* Figure 35. System Section W-Cr-G at 1600*K, Back-Calculated
with the Thermodynamic Data derived from the
Experimental Section in Figure 33.
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In contrast to this, from the known, and apparently well established literature

data for WC and W2G (Table 1), the corresponding value should be 3700 cal/gr. -

At. W. at a temperature of 1870*K. However, the calculated vertex of the

three-phase equilibrium at the solid solution (W.Cr) zC would be x c,/= 0. 08i

thi s would extend the three-phase equilibrium far above the observed homo-

geneity range of the (W.Gr) 2 C solid solution, and therefore presents a dis-

crepancy with the experimental findings.

C

/ I_

I

I .
U

I

Figure 36. System Section Mo-Or-C at 1500 K Back-Calculated
with the Thermodynamic Data Derived from the 
Experimental Section in Figure 34.
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Since it was known from the iiterature(-O) that the

binary W~C phase had an ordered distribution of carbon atoms, the only pos-

sibility in overcoming the observed discrepancy of approximately 1700 cal/gr. -

At. tungsten, was to assume an essential disordered sublattice in the MeC

phase at higher chromium ccchanges. Thus, for the case of a narrow energyI
gap between ordered and disordered phase (low transformation temperature),

the configurational entropy due to a statistical distribution of the N carbon

atoms among the ZN lattice sites available in the hexagonal close-packed Me,

structure (L'3-type) results in a free energy contribution of 1/2 RT ln 2

130 cl pr ormula weight MeIeand thus eliminates the discrepancy. A subse -

quent intensi,.e search to see, whether cr ndt, tic dis ordering extend~d to the binary

phases, finally resulted in the establishment of order-disorder reactions for

NbG, TaC, MoC and W2 CG. (The question, whether V 2C undergoes a related

transformation at low temperatures ( <800*C), is not yet completely resolved).

C. DISCUSSION OF ThE CARBON-RICH EQUILIBRIA IN

URANIU M- TRANSITION METAL-CARBON SYSTEMS

An interesting problem was present in connection with

the development of the fuel material for the European High Temperature Gas-

Cooled Reactor (Dragon). It consisted of the question, whether it would be

possible to stabilize the face-centered cubic monocarbide towards graphite

by alloying it with other suitable refractory carbides. We recall that in the

uranium-carbon system1) besides the monocarbide, two-carbon richer

phases U C 3and UC exist, of which the latter undergoes a crystallographic

transformation at approximately 1800*C. The resulting Ca.F.-type high tem-

perature modification of UC, ultimately forms a complete solid solution with
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the monocarbide. The problem was attacked in order to circumvent diffi-

culties which might arise from the volume changes of the dicarbide phase in

the transformation process, affecting the stability of the tight pyrolytic

graphite shell into which the particles were embedded. Apart from these,

as well as other factors, it was h3ped that the increased melting tempera-

tures of the alloyed material could improve the high temperature stability of

the fuel materials. It was known from previous work, that uranium carbide
Z 4)

forms complete solid solutions with a number of isostructural monocarbies',

the problem reduced to the question of,at wat ccncetrticn of thi allvir aterial

would the three-phase equilibrium(UMe)Cj-(U s Me)C-C be replaced by i
a two-phase range monocarbide-graphite. The general phase-situation observed

in these systems is shown in Figure 37.

C 1
i-

A

would ~ ~ U +h t re - h s e ui b iu(U, M e) C z- U e G C b e l c d

/ I

C+ C

U(,M) j 2(,e -
UC2

Ce( (Ue) '

UC MeC I

x

Figure 37. Basic Phase Distribution in the Carbon-Rich Portion
of Uranium-Refractory Transition Metal-Carbon Systems.
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Since the thermodynamic stability of a dicarbide in

the refractory transition metal-carbon systems is considered low, the

metal-exchange in UC 2 can, in a first approximation, be neglected. Thermo-

dynamically, the point in Figure 37 is related to the thermodynamical prop-

erties of the phases by stability condition (8).
I

(v-w) FA( )+ (w-u) FAv) + (u-v) FA(w) = 0

Applied to this case ( Z5 )

u = I solid solution (U,Me)C

v 1.85 UC 2

w cc C

we let w approach infinity, and the stability condition becomes

A(v) A(u)

i.e. the stoichiometry of the dicarbide does not enter into the result. Separating

the partial terms in base and concentration-dependent functions, neglecting

eventual metal exchanges in UG 2 , and replacing the free enthalpies by the

respective free enthalpies of formation, we obtain

-MIX
AF + AF -AF =0

LUG UC f U C2

A AmixAF AFR
UC : Fuuc R

The right hand side of the last equation represents the free enthalpy change

of the reaction

UC + 0.85C --*UC
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The exact concentration-dependence of the partial molar free energy of UC

in carbide solutions is unknown; however, the following interaction param-

eter in the vanLaar expression for the regular solution, which were derived

from the tie line distributions within the miscibility gaps of pseudo-ternary

(26)
systems U-Me-C may serve as useful approximations to describe the

average solution behavior:

'UC_ZrC -- 6,000, 'UG -HfC = 9,600, UC-NbC= 6,800 and aUC TaG=8,000 cal/mole.

Approximating the solutions as being regular, we obtain

Mec-UC (l-xu) + RT In xu AFR

x u .... Uranium exchange in the monocarbide solutions
MeC -UC.

The equilibrium composition x, in effect therefore becomes a function of the

free energy change AF . From the available thermodynamic data, AFR should

have been in the order of -20, 000 cal per formula change, corresponding to

xU < 2 atomic percent. From thesc data, an effective stabilization should

therefore, not have been expected. However, a closer examination of the values

reveals that they are incompatible with the observedlow-temperature decom-

position of UC ,whid rather indicatedonly a small value for AFR . This was

confirmed by experimental investigations of the phase-relationships in these

systems (26), and showed the restraining three phase equilibria for the

dicarbide to be located in the midile portions of the systems. The vertices of

the three-phase equilibrium (UMe)C-(UMe)2C-C at the monocarbide solid

solution for the various carbide solutions and a number of different tempera-

tures are presented in Figure 38.
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Back calculation of Wfromn these phase data#, and

taking into account the transformationi of U10 2 a 80 ilsatrlna

zation,

AF -10, 350 -5. 57T cal/formnula change, (T zlo0z000OK)
R

anrd

-7710- 4. 31 T cal/formula change (T =1900-21001K)

UCHCUC TaC
*~~. UHCj-UC-NbC

2200 C-zrC -____

* 2100

wj
cr 1900

w
* j r- 1700

f1600 DECOMPOSITION UC2 -____

MeC 20 40 60 80 U C

mole % UC-

a Experimental Data

-Calculated with Mean Value of A

Figure 38. Temperature Dependence of the Graphite-Stable

Ranges in Uranium -Containing Monocarbide
Solutions.
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The calculated data for ARare illustrated in

Figure 39.

CL
V,

o-3000 -

0

16000 -0 200 20

UDCalulted rom the System _____

igur 39,_ FreEtap hnesfrteRato

1600 180 2000 - , .6 2

(Dt Calculated from thae Syagrem s -- e

The free enthalpy of transformation of the tetragonal

into the cubic modification of UG 2 is given by the difference of AF' and f

AF.; we obtain, as a first approximation) from the data given above:

A~r 2640- 1.26 T cal/mole UC 2
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The phase diagram data, calculated with the mean values of RF and AF.

are in excellent agreement with the experiment (Figure 38). The binary

temperature stability limit T for the tetragonal UC-phase is given by

&FR= 0

= 1550"C

(Z5)
and agree well with the experiment Also, more recent thermochemical

values for the free enthalpies of formation of the uranium carbides( 2 7 '28)

closely confirm the data derived from the phase diagrams.

V. GENERAL DISCUSSION OF THE PHASE RELATIONSHIPS IN

TERNARY SYSTEMS OF REFRACTORY TRANSITION METALS

WITH B-ELEMENTS

A. METAL-CARBON SYSTEMS

During the past few years, temperature sections for a large

t number of ternary transition metal-carbon alloys have been investigated or

calculated. Their detailed evaluation, however, would exceed the framework

of the present discussion, and, therefore, reference is made to the literature

compilation at the end of the text 39 ) . In general, the previous investigations

cover only one temperature section of the system, and the investigation of

S complete systems has been initiated only recently under the sponsorship of

the Wright-Patterson Air Force Materials Laboratory.

As a rule, no ternary phases are formed in the ternary carbide

systems, i.e. the ternary phase relationships are governed by the binary
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compounds. Where the radius-ratio rule is fulfillud, the Isostructural mono-

carbides of the group IV and group V transition metals form complete series

of solid solutions. In the systems involving the group VI metals, the cubic

(BI) phases are stable at high temperatures only, and, therefore, the homo-

genelty ranges of the cubic solution are temperature-dependent; above the

eutectoid temperatures, however, which are 1960=C for a-MoG I X (B 1),

2530"C for ca-WC1 -x(B I), solid solution formation with the other cubic mono-

carbides is complete.

As for the subcarbides, complete solid solutions at higher tem-

peratures are formed between the Me C-phases of the group V metals as well

as between VC and Mo C, and V C and W ?C, respectively. In the carbon

systems of niobium and tantalum with the heavier group VI metals, the sub-

carbide solid solutions are unstable in respect to mechanical mixtures of

munocarbide and metal solution, but MeC single phase fields tend to increase

with temperature, or even show a continuous transition, as found for the

Ta-W-C system ( 12) . In the group IV metal-carbon systems, the Me C-phases

are unstable in respect to mixtures of metal + monozarbide; the ternary I

homogeneity ranges of the Me C phases in systems Me1 (V, VI)-Me,(IV)-C"

are therefore restricted.

In the ternary systems Me(group V or VI)-MeC(group IV)-C,due to

the instability of the Me 2C-phase in the binrry carbon systems of Ti, Zr, and

Hf, the ternary homogeneity ranges of the Me C-phases are very restricted.

In their basic layout, the ternary systems involving chromium

are similar to the molybdenum-containLng v y _tms, although the phase I
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distribution near the Cr-C edge systems are somewhat modified as a result

of the different structural characteristics of the chromium carbides.

The high temperature phase relationships in all ternary metal-

-trbon systems are complicated by the fact that in many of them even the

solid-state equilibria change rapidly with temperature, and the order-disorder-

transformations in the Me G-phases proceed as concentration-temperature

dependent reactions in the ternary phase fields. A few phase diagrams,

I together with their reaction diagrams and liquidus projections, which were takenI
from the work referenced in (10), may serve to illustrate the general appearance

of the complete constitution diagrams (Figures 40 through 48). A

In neither of the previously indicated systems 0 ) do melting

point maxima of the monocarbide solid solutions occur, and earlier findings

are related to the fact that maximum melting of the interstitial monocarbides

1does not occur at stoichiometry, i.e. ,rnelting of the ternary alloys is a func-

tion of the metal as well as the carbon concentration (Figure 49).

B. METAL-BORON SYSTEM

Many of the structural characteristics of the intermediate phases,

art repeaeu tiroughout the systems of the group IV to the grocp V' .. etal6;

hence, where these conditions prevail, and the radius ratios are within the

tolerable limits, complete solid solutions usually are formed. The stability of

the borides decreases with increasing group number; consequently, the

selectivity of the metal-exchange increases upon combining group IV with

group V or group VI metal borides.
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Apart from the technically most interesting group IV metal-

boron systems N~hich presently are being investigated under Air Force sponsor-

s hip (10) , very lit tie experimental work has been performed In this system

class. The phase relationships in the Zr-Hf-B system, which are representa-

tive of the phase behavior of all ternary group IV metal borirles, are shown

in Figures 50, 51 , and 5Z.
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C. REFRACTORY TERNARY SYSTEMS 'NVOLVING A

I TRANSITION METAL AND TWO B-ELEMENTS.

The group of systems considered are Me-X 1 -X 2 , where Me

stands for a refractory transition metal, andX, andX are either N,C,Si,

orB.

I Interstitials, such as oxygen and hydrogen, as well as other

elements, which to a certain degree might be equivalent to one of the elements

listed above and hence would fall into the same category, have been omitted

since they form either comparatively low-melting phases, or gaseous

reaction products with the other B-elements at high temperatures (0-Si, N,C).

Nitrogen in the refractory transition metals behaves similarly

to carbon, and a large number of interstitial compounds formed by this

element are isostructural with the carbides. Hence, extended or complete

intersolubility between nitrides and carbide phases is observed ( 1 9 } .
I.

Nitrides and carbides on the one hand, and borides as well as

silicides on the other, are quite different in their structural characteristics.

* Solid solution formation between these compounds usually is very restricted,

indicating high mutual transformation or disproportionation energies of the

lattice structures. The silicon-containing systems are further characterized

( by the appearance of carbon (nitrogen, oxygen, boron)-stabilized ternary

phases(19) .

Although for the majority of the systems isothermal sections

I are available from previous work ( 1 9 ) , the high temperature portions of the

majority of the ternary alloy systems are still unknown, and even a number

of binary systems would require extensive revision. High temperature portions
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of selected ternaries of these system classes are presently being investigated

under current Air Force programs (3Z) . From these systems, in particular the

borocarbides of the group IV metals have recently become of interest in the

development of oxidation-resistant graphites. Important equilibrium

characteristics of these systems are the formation of pseudo-binary systems

of the diborides with graphite and B 4C. Examples of the latter system group

are given in Figures 53 through 61.
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VI. NOTES ON THE RELATION OF PHASE DIAGRAM DATA TO

APPLICATION PROBLEMS

The purpose of a constitution or phase diagram of a system is to depict

in condensed form the equilibria existing between the phases in the given

alloy system. Consultation of the phase diagram will tell us, whether or not.

or to what extent, given alloy mixtures will undergo reaction- when heated to

temperatures and for times which are sufficient to allow equilibration to

take place. The information is quantitative with respect to the nature and compo-

sition of the phases .A phase diagram, combined with kinetic data, provides us

with a whole spectrum of means to modify the properties of allc s, of which

extensive use has been made in the past. However, the increasing demand

for materials capable of operating for prolonged lengths of time at extremely

high temperatures has introduced additional variables which have to be taken

into consideration. In reviewing problem areas in the field of high-tempera-

ture materials, oxidation-resistant coatings, etc., it is seen that

the main problem is not so much found in not having materials with any

of the desired properties, but rather in the lack of a single-phased material,

which combines all of the necessary properties. The conception of a com-

posite, or heterogeneous system, therefore, involves the task of combining,

the beneficial properties of a number of constituents within a quasi-homogeneous

structure without degradation.

Consideration of a composite system always implies a certain degree

of prefixation,since we normally have a certain base material already in mind.

The main problem to be solved concerns the modification of certain undesirable

properties, so that the system will be capable of performing under the prescribed
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condition. Typical cases may involve the protection of exposed surfaces

from corrosive gas attack, reinforcement of ceramic ox plastic structures, and

transpiration systems, etc. Each case may have its specific extra require-

ments, thus placing further restraints upon the usability of particular mate-

rial systems; however, chemical compatibility between the alloy phases will

be an eliminative prerequisite if the conditions are such, that non-equilibrium

states cannot be maintained over significant lengths of time. The recognition

of such prerequisites, their experimental and/or theoretical rationalization,

and, as a result, the estahlishment of an effective elimination and selection

system, constitutes an important first step in an intelligently conducted attack

on the problem. The largest part of the information required for the initial

screening can be obtained from phase diagrams, and the only possible, or the

optimum, compositions determined from the existing phase relationships.

Detailed phase diagram information is also necessary in order to predict the

reaction paths in a system of reacting species. While phase compatibility can

prevail between only two phases in binary systems, the additional degree of

freedom in ternary alloys allows much wider variations in the equilibria formed.

Obviously, the multiplicity of combinations becomes still greater in higher

order alloys. Without going into too great detail, we shall try qualitatively to

demonstrate on a simple example the variety of reactions, which nay occur

in two-phased ternary alloys having the same overall composition.

For this purpose, let us arbitrarily assume a diffusion couple made

up of interstitial phase solutions (A,B)CU and (A,B)Gv . We shall choose the start-

ing compositions (dashed line in Figure 61) so that a conjugate system is

formed with respect to the equilibrium compositions Xe1 and x e
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To make the example more concrete and easier to follow, we may,

for example, think, that u = 0 (metal solution), and v =(thus making it,

if C stands for carbon, a Me 2C solid solution). Equilibrium in the couple

AC V  Xe1 1  BC v

1- I

ACU X1  Xe1  BC u

Figure 62. Conjugate Diffusion Couple, Consisting of Two
Ternary Solutions (A, B)C u and (A, B)C v .  [

(Equilibrium by Interstitial Atom Diffusion)

will be attained, if the composition of the solution (A,B)C reaches X , and

that of (A, B)C assumes the equilibrium composition, denoted by Xei.U I
We first consider the following extreme cases:

a. The interstitial atom C is the only diffusing species
in the system.

b. The diffusion current is carried only by metal atoms
(A, B)

In process (a), equilibration can only be achieved by migration of carbon atoms

across the metal-carbide interface (Figure 62); thus, the subcarbide solution,

having the non-equilibrium starting composition XiI, gradually gets converted
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into a metal solution with the equilibrium concentration Xe. Simultaneously,

the transfer of carbon atoms results in a carburization of the metal solution

(starting composition Xi) into a subcarbide solution of the equilibrium composi-

tion X . The ultimate result is a complete phase interchange (Figure 63).
e1 1

C Interface

(A, B)C u  (A, B)C v

X _ Start

Intermediate Stage

(AB)C (A,B) u  After Complete

Xe UXe 1I Equilibration

Figure 63. Phase Interchange in a Conjugate Ternary Diffusion
Couple, for the Case that the Interstitial Atom C is
the Only Diffusing Species.

Considering the secoznd cases we see that the conpositions of the individual

phases gradually change along the lines indicated by the arrows in Figure 64, until

the equilibrium concentrations X and X are finally reached. We nate,
T II

that for host atom diffusion both phases do not physically interchange.

In praztike. we never will have to deal with either extreme, but

generally will be confronted with a superposition of both types. However,
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assume now, that, without changing the overall composition of the couple

as well as the position of the equilibrium tie line, we had chosen the initial I

compositions of the couple such that XI = X1l, i.e.,equal exchanges of A ani1

B in both solutions. Exchange of the inter stitial atom would not produce any

decrease in the total free energy of the diffusion system; hence, no net trans- t
fer of interstitial atoms would occur, and equilibration would take place via

diffusion of atoms A and B only.

XeT XH

AC v  BC

1 / 1
VI

AC' X I  Xe, BC 1

Figure 64. Equilibration by Host (A,B) Atom Diffusion in a
Ternary Diffusion Couple (A,B)Cu + (AB)Cv -

A closer analysis of the assumed example will reveal, that for all t

compositions lying between the line XI = X i and the equilibrium composi-

tions X and X , and regardless of the magnitude of the diffusion coefficiente I  eI

for the interstitial phase, the diffusion current would be carried only by the

host atoms (Figure 65). For concentrations on the opposite t- of the divid-

ing line XI = Xii, equilibration will take place by a combination u host and

interstitial atom diffusion resulting in at least a partial phase interchange.

Thus, in slite of the fact, that no structural changes, or additional phases are
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involved, the physical appearance and phase distribution of the ultimately

equilibrated alloy will vary significantly with the initially chosen starting

i compositions.

I
j .B A H

ACv BCv

0

II

AC ,- BCu
ACu C1 Xei JC

14- A - - B - J

I. Figure 65. Effect of Composition Upon the Equilibration
Rea-tions in a Ternary Diffusion Couple
(AB)Cu + (A,B)Cv (c = Interstitial Element)

0 ... Overall Composition of the Couple

Xe X e .. Equilibrium Tie Line

C . Conjugate Compositions

Vertical Shading ... Host Atom Diffusion Only

Horizontal Shading... Host + Interstitial Atom Diffusion (Partial Phase Interchange)
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I

Since the type of diffusion proceeding at the couple interface is -

apart from the variation of the conposition - dependent on the course of the

tie lines, the diffusion process is closely linked to the equilibrium condLtions [
prevailing in the system. We will, however, not pursue these questions any

further at this time, but emphasize the principal recognition of these factors I
for the solution of practical diffusion problems. The possibility, to derive

free energy gradients for the interpretation and quantitative evaluation of

diffusion data, by combining the thermodynamic approaches described in the f
previous chapters with pertinent phase informatioa, shall oaly be mentioned

VII. CONCLUDING REMARKS

Although the presently available experimental and theoretical material

is still insufficient to allow a fairly complete correlation of phase diagram

with thermodynamic data, it has been shown. that with relatively simple

thermodynamic approaches, useful information regarding phase stability can f
be derived, and in turn applied, to evaluate the phase relationships in still -

unknown systems. The examples given also show some of the difficulties i
encountered in applying mathematical models to actual systems they reveal [
the need for more complete and accurate data to enable more refined calcula-

tions. In many instances this will require an extension of the measuring

techniques to higher temperatures in order to account for thermal effects

due to excitation of other internal degrees of freedom.
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APPENDIX I

Proof of the Identity of the Functions ~A(x 1A and 4 B(XIB)

-mix

FZCv v A" C

mix "l (Z)6ZBCv +ZiB C v B
with

'6ZAG =(w-v) AF[AC + (v-u) '&'LAC -(w-u) &F'AC (3)
v U W

(FB w-vi AFfC + (v-u) AFBC- (w-u) AFfBC (4)
FZ BBC

U uW

Mixing Terms:

(A, B )C (XA) X A+xBl

AFmL~r

(A. B) 2m (x'A) X;,+xj

A Fmix X1(tt + x' =(AIB)G 'vim B

The partial quantities Sr mliLx are related to the integral terms by:

-mix
AC '01m + xB

v TA

~A 2M B _"R'

-mix 3
FAG 1 3m B -5r-r- I

w A

A-1



ZAGM" (VU mE7ix + (w-v) diAC - (w-u) Z&rc'

=(w-Ufl +(w-V)~ (W-u)jO ±(w-u)x "n'3m Im 2m BX A~**~

'IM -u(5)
A TxA

The analogous calculation performed for the component B yields:

~jmi =(w-u) 4p +(w-v) lm(w-u) + ('A'-u) xl'

+(w-v) x (Wrn X m (6)A xB B ,r

From the gradient condition we derive:

I~ L (A.B)C7I

TpT, p T, p

AF[(A, B)C z A 'FAC x1 £BCU + Vr

4£f(A, B)GC xA fAC + x"F.,C

"FfA,])C = X" AFA + x"' A CF + p3
w(,) A B w m1

Differentiation and rearrangement of the terms yields:

fAG- BC+ AG- BC + (7)
' A u " [ u A T x f A v A f v *

IA -2.



A1fAC A 1r 2B± + fBx (8)Ac v v +  A w w A

Combining equations (1) and (2), with (5) and (6), and rearranging the terms,

we obtain

%i *AlXLA ) -'BlXtB} = AFZAC -AFz.Bc +Iv-u) r +(wv) 8 in -(wu) '

v v xA Ar A"

Su,)stituting for -r and T from equations (7) and (8) yields:
TA TxA

A XiA) B(xA) = FzAc  zB +(v-u) ("FfAc - FBc -FAc +F I-
v V U U W W

-(W-u)( F -A -AF + AZBC

FLAG -6fBC fAGU U V V

From relations (3) and (4) follows immediately, that the last two terms in the

equation above are equivalent to AFzBG - AFZA C ; hence,
v v

AlXLA) - OB~xiB) = 0
or

,A(XiA) =B(X!B)

I
.- A-3



APPENDIX II

Collection of the Most Recent Phase Diagrams for Binary Transition Metal-

Carbon, and Transition Metal-Boron Systems.
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12oo, _...,, _III I 1 1
0 10 20 30 4C 50 60 10

Ti ATOMIC o CARBON

Figure 66. Constitution Diagram Til. niurn-Carbon. I
(E.Rudy, D.P. Harmon, and G.E. Brukl, 1965)(31) I
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Figure 67. Constitution Diagram Zirconium-Carbon.

(R.V.Sara, C.E. Lowell, and R.T. Doloff, 1963 and 1965)
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Figure 68. Constitution Diagram Hafnium-Carbon. :

(E. Rudy, 1965) ( 3 4 )
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22650

2000 1888" ' "

1500 1 0
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CN MOLE RATIO

Figure 69. Constitution Diagram Vanadium -Carbon),

(E.K. Storms and R..J. McNeal, 196Z) ( 3 5)
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Figure 70. Conotitution Diagram Niobium-Carbon

(H. Kimura and Y. Sasaki, 1961)(36)

Note: The order-disorder reaction of the NbC-phase
at - Z450*C (36)is not recorded in the diagram.
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Figure 74. Constitution Diagram Tungsten-Carbon.

(E. Rudy, St. Windisch, and J. R. Hoffman, 1965) (3 9 )
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Figure 75. Constitution Diagram Titanium - Bo:on. I
(E. Rudy and St. Windisch, 1965)(40)
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Figure 76. Constitution Diagram Zirconium-Boron.

(E. Rudy and St. Windisch, 1965)(41)
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Figure 77. Constitution Diagram Hafniumn-Boron. I

(E. Rudy and St. Windisch, 1 9 6 5)(4Z)
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Figuxre 78. Constitution Diagram Vanadiunm - Boron
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Figure 79. Constitution Diagram Niobium-Boron.

(E. Rudy and St. Windi.sch, 1965) (4 3 )
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Figure 80. Cor.stitution Diagram Tantalum-Boron

(E. Rudy and St. Windisch, 1965) ( 4 3 )

[

~A-17



T I
1.

[

CrsB 3  [rB
ICr 3 BAI-

24100 C 2  r

Cr4B lit

I

41200- I
900 - ..

0 20 40 60 80 100 I
Cr

-ATOMIC % B *

i

Figure 81. Constitution Diagram Chromium-Boro_

(H. Nowotny, E. Piegger, R. Kieffer, and F.Benesovsky,
1958),(44)
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